Random Matrix Theory: Lecture 1

Carlos G. Pacheco

CINVESTAV

Carlos G. Pacheco [Random Matrix Theory: Lecture 1](#page-7-0)

4 17 18

 \rightarrow \rightarrow \equiv

E

B.K.

 299

Let X_n random matrix, $X_n(i, j)$ i.i.d. ~ $N(0, 1)$.

• Wigner (1955):
$$
M_n = \frac{X_n + X_n^T}{2}
$$

Question: study

$$
F_n(x) = \frac{\{\# i : \lambda_i^{(n)} \leq x\}}{n}
$$

$$
\nu_n(\bullet) = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}(\bullet),
$$

where $\delta_{\mathbf{x}}$ stands for the Dirac delta measure.

Recall
$$
\lambda_1^k + \ldots + \lambda_n^k = \text{trace}(M_n^k)
$$
.

 299

∍

医阿里氏阿里氏

scaling

By the law of large numbers

$$
\int x\nu_n(dx) = \frac{\lambda_1 + \ldots + \lambda_n}{n} = \frac{1}{n} \text{trace}(M_n)
$$

$$
= \frac{M_n(1,1) + \ldots + M_n(n,n)}{n} \to E(M_n(1,1)) = 0.
$$

and

$$
\int x^2 \nu_n(dx) = \frac{\lambda_1^2 + \ldots + \lambda_n^2}{n} = \frac{1}{n} \text{trace}(M_n^2) = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n M_n(i,j)^2,
$$

and for each i, a.s. $\frac{1}{n}\sum_{j=1}^{n} M_n(i,j)^2 \to 1$, $n \to \infty$, thus $\int x^2 \nu_n(dx) \to \infty$ as $n \to \infty$.

∍

 Ω

Expectation of the moments

We study $\frac{1}{\sqrt{n}}M_n$, then

$$
\mu_n(\bullet) = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i/\sqrt{n}}(\bullet),
$$

Then $\int x^2\mu_n(dx) \to 1$. Define $m_k^{(n)} = \int x^k \mu_n(dx)$, and we calculate first $\lim_{n\to\infty} E(m_k^{(n)})$ $k^{(ii)}$). Using the trace identity

$$
m_k^{(n)} = \frac{1}{n} \left((\lambda_1/\sqrt{n})^k + \ldots + (\lambda_n/\sqrt{n})^k \right) = \frac{1}{n} \text{trace} \left((M_n/\sqrt{n})^k \right)
$$

=
$$
\frac{1}{n^{k/2+1}} \sum_{\bar{i}_k} P_n(\bar{i}_k),
$$

where, $\vec{i}_k = \{i_1, i_2, \ldots, i_k\}$, and

$$
P_n(\bar{i}_k) = M_n(i_1, i_2) M_n(i_2, i_3) \ldots M_n(i_{k-1}, i_k) M_n(i_k, i_1).
$$

If k odd, $E(P_n(\bar{i}_k)) = 0$. Then, study k eve[n:](#page-2-0) $m_{2k}^{(n)}$ [2](#page-4-0)[k](#page-2-0)

Two situations, when the set \bar{i}_{2k} has exactly $k+1$ different digits, or when it has $\leq k$ digits: $m_{2k}^{(n)} = m_{2k}^{(n)}$ $\binom{n}{2k}(I) + m_{2k}^{(n)}$ $\binom{11}{2k}(11)$ In situation II there are at most n^k different ways to choose $\leq k$ digits, and with one selection of digits we can form at most 2k! arrangements for the pairs

$$
(i_1, i_2)(i_2, i_3) \ldots (i_{2k-1}, i_k)(i_{2k}, i_1).
$$

Moreover, recall that for h even, $E(M_n^h(i,j)) = (h-1)!!$, therefore there exist a constant α_k depending only on k such that

$$
E(m_{2k}^{(n)}(II))\leq \frac{1}{n^{k+1}}n^k\alpha_k,
$$

which goes to 0 when $n \to \infty$ and k is fixed.

つくい

moments m_{2k} , digits $k+1$

For situation 1 with $k+1$ digits in \bar{i}_{2k} , $E(P_n(\bar{i}_{2k}))$ is the product of k second moments $E(M_n^2(i,j)) = 1$.

Following the flow $i_1 \rightarrow i_2 \rightarrow \ldots i_{2k} \rightarrow i_1$ we notice that the set of pairs

$$
(i_1, i_2)(i_2, i_3)\ldots (i_{2k-1}, i_k)(i_{2k}, i_1)
$$

forms a directed graph with no loops made with $k + 1$ vertices and 2k edges. By gluing the parallel edges it is formed a tree with no loops.

Having fixed one particular choice of these type of trees, there are $P(n, k + 1)$ different permutations using $k + 1$ digits from n numbers. Hence, we end up with

$$
E(m_{2k}^{(n)}(I))=\frac{1}{n^{k+1}}\frac{n!}{(n-(k+1))!}C_k,
$$

 C_k is the number of trees with no loops that one can form with $k+1$ vertices: $C_k = \frac{1}{k+1} \binom{2k}{k}$ $\binom{2k}{k}$ the Catalan n[um](#page-4-0)[be](#page-6-0)[rs](#page-4-0)[.](#page-5-0)

 QQ

The semicircle law

Since
$$
\frac{1}{n^{k+1}} \frac{n!}{(n-(k+1))!} = \frac{n}{n} \frac{n-1}{n} \dots \frac{n-k}{n}
$$
 converges to 1 as $n \to \infty$,

$$
\lim_{n \to \infty} E(m_k^{(n)}) = m_k = \begin{cases} 0 & k \text{ odd} \\ C_{k/2} & k \text{ even.} \end{cases}
$$

Also

$$
Var\left(m_k^{(n)}\right) \leq \frac{k}{n^{2+k}}n^k\alpha_k = \frac{c_k}{n^2} \to 0.
$$

Then, by Borel-Cantelli lemma, almost surely $\lim_{n\to\infty} m_k^{(n)}=m_k.$ The law for these moments is the semicircle law

$$
\rho_{sc}(x) = \frac{1}{2\pi} \sqrt{4 - x^2}, \ x \in [-2, 2].
$$

∍

 200

Given a tree of $k + 1$ vertices and no loops, one can form a $2k$ −steps trajectory p on the positive integers starting and finishing at 0 moving one unit at each step. : $p(i) \geq 0$ such that $p(0) = 0$, $p(1) = 1$, $p(2k) = 0$ and $|p(i + 1) - p(i)| = 1$, these are called Dyck paths The number of k-Dyck paths is

$$
\binom{2k}{k} - \binom{2k}{k-1} = \frac{1}{k+1} \binom{2k}{k}.
$$

つくい