Random Matrix Theory: Lecture 5

Carlos G. Pacheco

CINVESTAV

Point process

Definition

A **point process** over a space Λ is an random object X such that X(D) is the number of points in a set $D \subset \Lambda$, which is random variable on \mathbb{N} . It is said that X has **intensity functions** (or **correlation functions**) $\rho_k : \Lambda^k \to \mathbb{R}$, with respecto to μ , if

$$E\left[\prod_{i=1}^k X(D_i)\right] = \int_{D_1} \ldots \int_{D_k} \rho_k(x_1,\ldots,x_k) \mu(dx_k) \ldots \mu(dx_1),$$

where $D_i \subset \Lambda$ are disjoint sets.

point process from a vector

Example

Let $V=(X_1,\ldots,X_n)$ be a random vector on \mathbb{R}^n , such that the variables are exchangeable, i.e. any permutation of the variables gives the same probability distribution. Let $h_n(x_1,\ldots,x_n)$ be its probability density. Then, $X(D)=\sum_{i=1}^n \delta_{X_i}(D)$ is a point process on \mathbb{R} , w.r.t. the Lebesgue measure, and its correlation functions are

$$\rho_k(x_1,\ldots,x_k) = \frac{n!}{(n-k)!} \int_{\mathbb{R}^{n-k}} h_n(x_1,\ldots,x_n) dx_{k+1} \ldots dx_n, \quad (1)$$

with $k = 1, \ldots, n$.

Determinantal process

Definition

A determinantal point process is such that

$$\rho_k(x_1,\ldots,x_k)=\det[K(x_i,x_j)]_{i,j=1}^k,$$

where $K:\Lambda\times\Lambda\to\mathbb{C}$ is measurable, and it is called the **kernel** of the process.

Bergman point process

Example

See Peres and Virag (2005). Let us present this first interesting example, the where the points are zeros of a random function.

Define $f(z) = \sum_{n=1}^{\infty} a_n z^n$ where a_n are i.i.d. Gaussian r.v.s over \mathbb{C} . Then

- 1. The radius of convergence is 1 almost surely.
- 2. The set $\mathcal{Z} = \{z \in \mathbb{C} : f(z) = 0\}$ is almost surely infinite but countable.
- 3. $X(D) = |D \cap \mathcal{Z}|$ is a determinantal point process over \mathbb{D} , w.r.t. the Lebesgue measure, with kernel

$$K(x,w)=\frac{1}{\pi(1-z\bar{w})^2},$$

which is called the Bergman kernel.

from Ginibre ensemble

Example

See Ginibre (1965). Let M be a $n \times n$ random matrix where the entries are independent Gaussian r.v.s. Then, the eigenvalues of M form a determinantal process over \mathbb{C} , w.r.t. $\mu(dz) = e^{-|z|^2} dz/\pi$, with kernel

$$K(z,w) = \sum_{k=0}^{n-1} \frac{(z\bar{w})^k}{k!}.$$

Sine point process

Example

Take $\Lambda = \mathbb{R}$. It turns out that the kernel

$$K(x,y) = \frac{\sin(\pi(x-y))}{\pi(x-y)}$$

defines a determinantal process, w.r.t. the Lebesgue measure. This process arises in the limit in different physical and mathematical situations, that is why it is said to be a universal object.

from the density of eigenvalues

Let X_n be the point process from the eigenvalues of the GUE ensemble.

From one Lemma we can see that X_n has correlation functions given by

$$\rho_k(x_1,\ldots,x_k) = \frac{n!}{(n-k)!} \int_{\mathbb{R}^{n-k}} h_n(x_1,\ldots,x_n) dx_{k+1} \ldots dx_n$$
$$= \det([K_n(x_i,x_j)]_{i,j=1}^k$$

with $k = 1, \ldots, n$.

Christoffer-Darboux

According to the Christoffer-Darboux indentity

$$K_{n+1}(x,y) = e^{-(V(x)+V(y))/2} \sum_{k=0}^{n} \frac{h_{k}(x)h_{k}(y)}{\gamma_{k}^{2}}$$

$$= e^{-(V(x)+V(y))/2} \frac{1}{\sqrt{2\pi}n!} \frac{h_{n+1}(x)h_{n}(y) - h_{n}(x)h_{n+1}(y)}{x - y}$$

$$= e^{-\frac{1}{2}((x/\sqrt{2})^{2} + (y/\sqrt{2})^{2})} \frac{2^{-n}}{2\sqrt{\pi}n!} \times \frac{H_{n+1}(x/\sqrt{2})H_{n}(y/\sqrt{2}) - H_{n}(x/\sqrt{2})H_{n+1}(y/\sqrt{2})}{x - y},$$

Asymptotics

$$e^{-(x/\sqrt{2})^2/2}H_{n+1}(x/\sqrt{2}) \sim \frac{2^{n+1}}{\sqrt{\pi}}\Gamma\left(\frac{n+2}{2}\right)\cos\left(\sqrt{n+1}x - \frac{(n+1)\pi}{2}\right),$$

and

$$e^{-(y/\sqrt{2})^2/2}H_n(y/\sqrt{2})\sim rac{2^n}{\sqrt{\pi}}\Gamma\left(rac{n+1}{2}
ight)\cos\left(\sqrt{n}y-rac{n\pi}{2}
ight),$$

the Sine kernel

Take
$$x = \frac{u}{\sqrt{n}}$$
 and $y = \frac{v}{\sqrt{n}}$

$$K_{n+1}(x,y) \sim \frac{2^{-2k}}{2\sqrt{\pi}(2k)!} \frac{2^{2k+1}}{\sqrt{\pi}} \frac{2^{2k}}{\sqrt{\pi}} \sqrt{\pi} \frac{(2k)!}{2^{2k}k!} k!$$

$$\frac{\cos(u)\sin(v) - \sin(u)\cos(v)}{u - v} \sqrt{n}$$

$$= \frac{\sqrt{n}\cos(u)\sin(v) - \sin(u)\cos(v)}{u - v}$$

$$= \frac{\sqrt{n}\sin(u - v)}{u - v}$$

Then in the limit the set of eigenvalues form the

Sine point process.

