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Abstract

In different branches of science, we deal with models which are both, stochastic

(or random) and evolving dynamically in time. We consider general structures called

Random Dynamical Systems consisting of sequences of random elements appropriately

parameterized. The random elements can be random variables, finite or infinite di-

mensional random vectors or sequences of stochastic processes or even functionals of

stochastic processes. Our models allow to analyse a superposition of random effects.

One of the most important problems is to find the limit behaviour of such systems.

There are several different ways to look for the limit, e.g. in week sense or in strong

sense. The existence of any kind of a limit is understood as a stability property of the

system under study. In such a case we say that the random system obeys or reaches

that specific kind of regularity in the limit and also that the system is stabilising

in limit. In the Thesis we consider different kinds of stability/regularity, such as:

ergodicity of Markov processes describing random walks in random environment, the

limit-processes of sequences of stochastic processes based on random sums of arbitrary

random variables and the convergence of a sequence of algorithms when solving an

integral equation. An illustration in an applied area is also given.

Although the type of stability/regularity seems different for the above models, it

will be clear that they actually come all from the same general concept - the existence

of limits of the probabilistic laws describing the evolution of random systems. In other

words, since we deal with general random elements, they are governed by specific

probabilistic laws, then under some conditions, functions or functionals of the random

elements have limits, in a specified way. Any such a limit is a regularity property of

the system.

Besides their theoretical nature, the models considered in the Thesis and the ob-

tained results are directly related to problems in other areas. One such an area is

statistical physics, where one of the fundamental problems is to analyse the behaviour

of large ensembles of randomly moving particles. Another area of possible applica-

tions is Financial mathematics. We consider a model of financial time series that

resembles the so-called Binomial model. Under some conditions, it is known that the

Binomial model converges to a functional of the Brownian Motion. This involves the

Cox-Ross-Rubinstein framework and the Black-Scholes model. Similarly, under appro-

priate scaling, the models we study converge to the so-called Generalized Hyperbolic

Lévy Motion.

In summary, this Thesis is about stability properties of random dynamical systems.
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Symbol Index

a.s. almost surely

ch.f. characteristic function

d.f. distribution function

f.d.d. finite dimensional distributions

r.v. random variable

(A, ν, γ) The characteristic triplet of a Lévy process

|x| The absolute value of x

bxc The largest interger below of x

BS Borel sigma-algebra of the space S

C(S) Continuous functions from the space S to R

Cb(S) Bounded continuous functions from the space S to R

C Space of continuous functions

C→ Space of increasing continuous functions

C⇒ Space of strictly increasing continuous functions

D Space of cádlág functions (left-continuous with right-hand limits)

D→ Space of increasing cádlág functions

D⇒ Space of strictly increasing cádlág functions

J1 The Skorohod topology in D

L(X) The law of the random element X

(Ω,F , P ) Probability space Ω with sigma algebra F and probability measure P

R The set of real numbers (−∞,∞)

X
d
= Y X and Y have the same law

X ∼ f The density of the random variables X is f

X
f.d.d→ Y Convergence of the finite dimensional ditribution of X to those of Y

X
d→ Y Convergence in distribution of X to Y

Xt− limXt−ε for ε > 0 and ε→ 0
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1 Introduction

In the following section we summarize general ideas, notion, questions and results, that are

treated in this Thesis, underlying the inter-relation of the topics.

1.1 Stability of random systems

In real life there are several phenomena which evolve randomly in time, essentially this

means that we can not predict the exact future outcomes. Nevertheless, we always guess

that it might be possible to observe some patterns and regularity. Because it is important

for us to explain and understand the uncertainty, apparently randomness of the phenomena,

we appeal for adequate models that help to pursue our aims. This is how we arrive to

the necessity of studying and analyzing, from general point of view, the limit behaviour of

random elements that arise from a random system. The random and dynamical systems

that we work with can be analyzed as schemes which consist of an infinite sequence of

transformations or functions of collections of random quantities. Thus, our main goal is to

study different stochastic dynamical models and explore the existence of any sort of stability

which can be described in an appropriate way. Typically, a stability property arises as a

result of a limiting procedure. For example, we may think of stability when a system reaches

a state or position which in some sense we can call an equilibrium. This would mean that

the system remains unchanged or “almost” invariant.

The following is a list of models, each being both stochastic and dynamical.

Random walks

Law of large numbers

Markov chains and ergodic distributions

Central limit theorem

Domain of attraction in limit theorems

Extreme value theory and other transformations

Functional limit theorems

Monte-Carlo techniques
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Random walks. Consider a sequence of random variables X1, X2, .... To analyze the

sums of random variables is a fundamental problem in probability. Suppose we are interested

in the new sequence Y1, Y2, ... defined as

Yn =

n∑

i=1

Xi for n = 1, 2, ...

This is the so-called random walk which is another collection, or sequence of random variables

based on the original sequence {Xi, i = 1, 2, ...}. Thus the sums form a random system

obtained by transformations of random variables. We are interested to study the limit

behaviour of the sequence {Yn, n = 1, 2, ...}, i.e. we want to describe the variable Yn when

n→ ∞. It could be the case that the variable Yn explodes to ∞ or −∞. In such a case, the

system can not be stable.

Law of large numbers. Sometimes, instead of analyzing the bare sum we can apply

a different transformation that describes a new random system that brings stability. For

instance, suppose we are interested to study the average value rather that the bare sum Yn,

i.e.

Sn =
1

n

n∑

i=1

Xi.

From probability theory we know that if X is a random variable (r.v.) and {Xi, i = 1, 2, ...}
are independent and identically distributed (i.i.d.) r.v. like X, and the expectation E(|X|)
is finite, then the average Sn tends to E(X) as n → ∞ almost surely (a.s.). The above

result is the well-known strong law of large numbers. We give this example to illustrate,

vaguely, the idea of a random system that brings stability in the form of convergence a.s.

Another similar example of convergence a.s. is the so-called laws of iterated logarithm. Also

Birkhoff´s individual ergodic Theorem, which is related to the next point, can be regarded

as a strong law of large numbers for Markov chains; and this is a important result for the

Monter-Carlo techniques, also mentioned below.

Markov chains and ergodic distributions. The existence of a stationary distribution

for a Markov chains is another example. The main interest is to find limit distribution, or

the so-called ergodic distribution of the Markov chain. The Markov chain, indexed with
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discrete time, defines a random system (see Stenflo (2001)), and the existence of the ergodic

distribution defines its stability property.

In this dissertation we think of a random system in the following unified way. We start

with a collections of random elements, e.g. random events, random variables, random vec-

tors, stochastic processes. Then we define a new sequence of random elements as a collection

based on transformations of the original random elements. Or we say that the random system

is generated by the sequential transformations of a collection of random elements.

That is, given a collection of random elements X1, X2, ... we can obtain a new sequence

of random elements of the form

Yn = Hn(X1, X2...), n = 1, 2, ...

where Hn are transformations of X1, X2, ...

Central limit theorem. The central limit theorem (CLT) is another fundamental result

exhibiting a stability property. It states the following. Let X1, X2, ... be a sequence of random

variables which are i.i.d. with E(X1) and V ar(X1) finite. Then, as n→ ∞, the distribution

of the centered and normalized sums,

Sn =
1√

nV ar(X1)

n∑

i=1

(Xi −E(X1)),

converges to the standard normal distribution N(0, 1).

Domain of attraction. Similar to the kind of stability related to the Central limit

theorem is the following concept. We say that a r.v. X is in the domain of attraction of the

r.v. Y , or that X obeys a central limit theorem, if there exist a sequence of real numbers

{an, n ≥ 1} and a sequence of positive numbers {bn, n ≥ 1} such that

1

bn

n∑

i=1

Xi − an
d→ Y as n→ ∞.

Here X1, X2, ... are independent copies of X. Under some conditions on the tails of the

distribution (The tails of the distribution of a r.v. X is refered to be P (|X| > α)), the
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so-called heavy-tailed distributions, it is possible to find the domain of attraction. It is

known as the stable laws (a classical reference is Gnedenko and Kolmogorov (1954), see also

Meerschaert and Scheffler (2001), Whitt (2002), Lamperti (1977)). It is also still possible

to have a stability property, e.g. after relaxing the independence condition for the r.v.s

X1, X2, ...(see Whitt (2002)).

Extreme value theory and other transformations. Summation of random variables

is a transformation that, under some conditions, brings stability. However, it is possible

to prove other limit theorems for other types of transformations, such as multiplication

(products), taking a minimum or a maximum, or even a combination of them, see Whitt

(2002). This involves the random quantities Tn, Maxn and Minn, where

Tn = X1 · ... ·Xn, Maxn = max {X1, ..., Xn} , Minn = min {X1, ..., Xn} .

For these cases it possible to describe a random system that reaches stability in some sense.

For example, under some conditions there are sequences of real numbers {an, n ≥ 1} and

positive numbers {bn, n ≥ 1} such that each random sequence an (Tn)
bn , anMaxn + bn and

anMinn+ bn converges in distributions to a specific random variable. The case of Maxn and

Minn are widely studied in the so-called EVT (extreme value theory). The Gumble, Fréchet

and Weibull distributions arise as the limit in this type of random systems. The products

Tn have also several applications and it has been studied the possible stability of a system

that it can bring; an extended treatment can be found in Galambos and Simonelli (2004).

In all the examples mentioned above, the random systems obey stability as a specific

limit of transformed sequences of r.v.s. There is even a more general theory dealing with

random elements in functional spaces. The next examples of stochastic dynamical systems

are also treated in this Thesis.

Functional limit theorems. Consider the following construction. Let X1, X2, ... be

i.i.d. r.v.s. with mean µ and variance σ2, finite. Let us define the following sequence of

stochastic processes

Sn(t) =
1√
σ2n

btnc∑

i=1

(Xi − µ), t ≥ 0, n = 1, 2, ...,
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where bxc stands for the integer part of the real number x. There is a result (see Billingsley

(1999)) called the Donsker´s theorem, saying that this sequence of stochastic processes con-

verges in distribution (carefully and formally defined) to the Brownian motion. This kind

of results are called functional limit theorems because this is convergence in the space of

functions. In this case, with a sequence of r.v.s X1, X2, ... and a sequence of transformations

we obtain a sequence of stochastic processes. The stability property is reached when the

limit as n → ∞, specified in some sense, of this sequence stochastic processes is another

stochastic process. The construction of the Brownian motion using the so-called Haar and

Schauder functions is another example. Although the construction is different from simple

sums, it is still based on transformations of a countable family of r.v.s. In this construction

the limit of the random elements is also the Brownian Motion (see Karatzas and Shreve

(1991), p.56) which specifies the stability of this random system.

Monte-Carlo techniques. A topic related to stability is the so-called Monte-Carlo

technique used for example for estimating an integral of a deterministic function. The

algorithm is fed by random quantities to approximate the integral of the function with a

sequence of other random quantities produced by the iteration when running the algorithm.

Again, the stability of the random system is reached when approximating the exact value of

the integral.

Also, we have to mention that there is a theory for stability of stochastic differential

equations. This concerns mainly diffusions, which are stochatic differential equations driven

by the Brownian Motion, and has its origins in the classical theory of stability of deterministic

differential equations (see Mao (1997) or Oksendal (2003)).
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1.2 Main topics treated in this work and contributions

Let us describe briefly the structure of the dissertation also mentioning about the main new

developments which can be considered as a contribution to the area of stochastic dynamical

systems.

This Thesis comprises different models of random systems that reach some sort of sta-

bility. The work can be summarized as follows.

In Chapter 2, we consider several models of random motions in random environment.

This requires us to study classes of discrete-time Markov chains with values in the interval

(0, 1). These chains are ergodic and the important problem is to find explicitly the ergodic

distribution.

In Chapter 3, we study models based in random sums of r.v.s. We establish limit theorems

for some stochastic processes that generalized the Continuous Time Random Walks (CTRW).

This will help to propose an economic model base on discrete lattices path-structure to study

financial series. We also study the moment determinancy of random sums.

Chapter 4 is entirely devoted to pricing theory. We use models of Chapter 3 for pricing

contingent claims.

Chapter 5 is dedicated to statistical inference. This also has a flavor of stability property

of a random system.

In Chapter 6, we propose a numerical algorithm for solving specific classes of integral

equations.

We have included appendices at the end of Chapters 2 and 3 to recall notions and results

that we use througout, but also they are meant to be a compact self-contained summaries

of the general theory in this area. The same can be said about Sections 3.3, 4.1 and 4.2.

The contributions made in this work can be identified in the text as those results, propo-

sitions, which are numbered.

The Propositions of Chapter 2 describe properties of the ergodic distribution or determine

the ergodic distribution for some Markov chains, specifically described.

The Propositions of Chapter 3 establish the limit of sequences of specific continuous-time
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stochastic processes based on random sums of r.v.s. In the same chapter, we have a result

that establishes the moment determinancy of random sums of r.v.s.

In Chapter 4 section 4.3, after exposing the general theory of pricing in Sections 4.1 and

4.2, it is described a general mechanism for pricing using the models of Chapter 3.

In Section 5.1 we have a proposition that describes a consistent estimator of the diffusion

coefficient of a Geometric Brownian motion. Also stated in the Section, we have a proposition

dealing with the so-called order statistics. In Section 5.2 it is suggested a procedure for

estimating parameters of a model treated on Chapters 3 and 4.

In Chapter 6, it is proposed a technique, based on Monte-Carlo techniques, for solving

integral equations.

The above, together with some important definitions and remarks, represent the contri-

bution of this work.

Successfully, we answer interesting questions for different stochastic dynamical models

which are either new or extensions of models treated by other authors.
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2 Random Motion in Random Environment

The Markov chains considered in this section arise naturally as extensions of the following

simple model.

A particle is moving from one position to another position in the interval (0, 1). We

denote by Xn its position at time n = 1, 2, ... and let at time n, Xn = x. Then at time n+ 1

the particle moves towards 1 with probability p and towards 0 with probability q = 1− p. If

the particle goes up, the new position is uniformly distributed in the interval (x, 1), while,

if it goes down, the position is uniformly distributed in the interval (0, x).

Several variations of this Markov models have been studied recently. Among the available

sources we mention here Diaconis and Freedman (1999), Stoyanov and Pirinsky (2000), Letac

(2002) and Iacus and Negri (2003).

In Stoyanov and Pirinsky (2000) it is found the ergodic distribution of similar models by

using the Fréchet-Shohat theorem. Here we follow different procedure allowing us to find

the ergodic distribution in similar models.

2.1 Models, questions of interest and some results

In the following discussion, X is a random variable (r.v.) with distribution function (d.f.) F

and density f , and we write X ∼ F or X ∼ f.

Let us think of the motion of a physical particle, or the movements of a stock price, or

the ratio of some variables, along discrete time, say n = 1, 2, ... The notion of the particle

is random, in one or another sense, which will be specified. After rescaling all values, we

can consider all variables involved to be in the interval (0, 1). Starting from X0 ∈ (0, 1), the

position of the particle at time n is denoted by Xn. Hence Xn, n = 0, 1, ... is a discrete-time

stochastic process. If at time n, Xn = x, x ∈ (0, 1), the further motion is described as

follows: with probability pn the particle goes up, i.e. Xn+1 > Xn, while, with probability

qn = 1 − pn, the particle moves down, so Xn+1 < Xn.

Now we need to introduce two functions. For any x ∈ (0, 1), and n, let

fn(u | x), u ∈ (x, 1) and gn(u | x), u ∈ (0, x)
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be probability density functions.

We define random motion of the particle, from position Xn = x, by associating its up-

movements with fn(· | x) and down-movements with gn(· | x). That is

(Xn+1 | Xn = x) ∼ fn(· | x) on (x, 1), (if going up) with probability pn, while

(Xn+1 | Xn = x) ∼ gn(· | x) on (0, x), (if going down) with probability qn. (1)

Since both, the direction to move, and the position of the particle are random, we use

the term random motion in random environment.

Thus, the motion of the particle is described by the random sequence {Xn, n = 0, 1, 2, ...},
which is a non-homogeneous Markov chain with discrete time and state space (0, 1).

In general, the properties of this Markov chain depend on the probabilities

{p0, p1, ...; q0, q1, ... : qn = 1 − pn} and the densities {fn(· | x), n = 0, 1, 2, ...} and

{gn(· | x), n = 0, 1, 2, ...}. Obviously, there are many ways to choose these paramenters of

the model. Only after specifing them, we can look at the behaviour of the chain as n→ ∞.

2.1.1 Specific setting

Suppose that h = (h(x), x ∈ (0, 1)) is a density function and let Y1, Y2, ... be a sequence of

independent r.v.s. each with density h.

Let us assume that for any x ∈ (0, 1) and any n = 1, 2, ..., fn(· | x) and gn(· | x) are

specified by the same density h on (0, 1) rescaled repectively on the subintervals (x, 1) and

(0, x) as follows. If at time n, Xn = x, x ∈ (0, 1), we take fn(· | x) to be the density of the

r.v. (1− x)Yn + x on (x, 1), and similarly, gn(· | x) the density of the r.v. x− xYn on (0, x).

The densities fn(· | x) and gn(· | x) are “similar” to h (they have the same shape), but

instead of being on (0, 1) they are defined on [x, 1) and (0, x), respectively. We easily see

that

fn(u | x) =

(
1

1 − x

)
h

(
u− x

1 − x

)
, u ∈ (x, 1), and gn(u | x) =

(
1

x

)
h

(
x− u

x

)
, u ∈ (0, x).

By (1), the model for Xn+1 is:

Xn+1 =





Xn + (1 −Xn)Yn with probability pn

Xn −XnYn with probability qn.
(2)
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Moreover, if Bn, n = 0, 1, 2, ... are Bernoulli r.v.s, i.e. Bn = 1 with probability pn, and

Bn = 0 with probability qn, then

Xn+1 = Xn(1 − Yn+1) + Yn+1Bn, n = 0, 1, 2, ...;X0 = x0.

Under the above assumptions on {Yn} and {Bn} the random sequence {Xn, n = 0, 1, 2, ...}
is a Markov chain. This is referred to be the iterated function system representation of the

Markov chain, see Stenflo (2001) and Diaconis and Freedman (1999). The Markov chain

defined above can be considered as a typical example of a random dynamical system.

By using the recursive formula for Xn+1, we can find the following iteration formula:

Xn = X0

n∏

i=1

(1 − Yi) +
n−1∑

k=1

Bk

{
Yk

n∏

j=k+1

(1 − Yj)

}
+BnYn, (3)

Here, to recall, Y1, ..., Yn, B1, ..., Bn are all mutually independent r.v.s defined as above.

2.1.2 Particular cases

An interesting particular case is when Yn is a uniform r.v. and Bn a Bernoulli r.v. with

constant pn, i.e. pn = p for all n = 1, 2, ..., where p ∈ (0, 1). This means that from its

current position Xn = x, the particle moves up with probability p and down with probability

q = 1− p. This model was studied in Stoyanov and Pirinsky (2000), and it is found that the

ergodic distribution of the Markov chain Xn is beta distribution β(p, q) with q = 1 − p.

Recall that a r.v. ξ is beta-distributed with parameters a and b, a > 0, b > 0, and we

write ξ ∼ β(a, b), if the density of ξ is

p(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1, x ∈ (0, 1).

Here Γ(·) stands for the classical Euler-gamma function. And the moments of ξ are given by

E
[
ξk+1

]
=

k∏

i=0

a+ i

a+ b+ i
, k = 0, 1, 2, ... (4)

One of our goals is to find the ergodic distributions of the Markov chain Xn for other

choices of Yn and Bn.
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Figure 1: Simulation of Case 1

Figure 2: Simulation of Case 1

To have an idea of how the Markov chain behaves we present the simulation of one path.

Using equation (2) where Bn ∼Bernoulli(0,1) with parameter p = .6 and Yn ∼ β(4, 500)

for n = 0, 1, 2, ..., we start the Markov Chain at X0 = .1 and let it run up to 10, 000

points. Additionally, we show the histogram for the values of the path (Figures 1 and 2,

respectively). Birkhoff´s individual ergodic theorem (In the Appendix) justifies why the

histogram is an approximation for the ergodic distribution, so, the histogram gives a glance

of how the ergodic distribution looks like.

Now we present the cases we work with. One of the extensions is to assume that Yn

follow beta-distribution, i.e. the density h = L(Yn) is not just the uniform.

Case 1. Suppose L(Yn) = β(1, b) for some b > 0, and pn = p ∈ (0, 1) for all n = 1, 2, ....

Case 2. Suppose L(Yn) = β(a, a+ 1) for some a > 0, and pn = 1
2

for all n = 1, 2, ....

In the next two cases the probability of going up decreases as the particle goes up, and

the probability of going down decreases as it goes down. In other words, if the particle moves

closer to 1, then, for the next step, it is more likely that it moves towards 0; or towards 1 if

the particle is closer to 0.

Case 3. Take L(Yn) = β(1, b) for some b > 0, and let now the probability pn be random

and uniformly distributed on the interval (0, 1 −Xn) for n = 1, 2, ....

Case 4. Assume that L(Yn) = β(a, a + 1) for some a > 0, and let again pn be random

and uniformly distributed on the interval (0, 1 −Xn)for n = 1, 2, ....

In the next case it can be seen how the probability of going up increases when the particle
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moves up over the time, and the probability of going down increases when it moves down,

having the two boundaries {0} and {1} as absorbing points.

Case 5. Here L(Yn) = β(a, b) for some a, b > 0, and pn is assumed to be random and

uniformly distributed on the interval (0, Xn) for n = 1, 2, ....

Let us mention that, for the case when Yn is uniform in (0, 1) and pn = p (included in

Case 1 or 2), Stoyanov and Pirinsky (2000) has found the ergodic distribution by studying

the limit of the moments of Xn and applying Fréchet-Shohat theorem.

The recursive formula (2) can be used to find the moments of Xn. Indeed, from (2) we

can obtain the first moment:

E [Xn] = E [X0]

(
b

a + b

)n
+ p

a

a+ b

(
1 −

(
b
a+b

)n)

1 − b
a+b

.

Taking the limit as n→ ∞, we conclude that the first moment of the ergodic distribution is

equal to p.

However, to find E
[
Xk
n

]
and the limits as n→ ∞ for k = 2, 3, ... using the above recursive

formula, is not an easy task.

Instead, we derive an equation called a distributional equation, for the limiting (ergodic)

random quantity. From it, we obtain the moments of the ergodic distribution. Since the

ergodic distributions have bounded support in the interval (0, 1), it is uniquely determined

by its moments. For Case 2 (in Proposition 3) we find directly the ergodic distribution using

the distributional equation.

It is important to recall that in general there are distributions with unbounded support

which are different but have the same moments (we will come back to this in Chapter 3).

This property is called M-indeterminancy, see Stoyanov (1997).

The following proposition helps for all the cases cited above.

Proposition 1 Assume that the distribution of Yn is β(a, b) with a, b > 0, and let pn = p

for all n = 1, 2, ..., p ∈ (0, 1). Then limn→∞Xn
d
= X, for some r.v. X with E[X] = p and

E[X2] = a+1+2bp
a+1+2b

p. Moreover, the moments of the X satisfy the following recursive formula:

E(Xn) =
1

1 − p b
b+a

p

n∑

i=1

(n
i
)
E
[
Xn−i(1 − Y )n−iY i

]
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Proof. First we show that, as n→ ∞, the variables Xn converge in distribution to some

r.v., say X. Then we find that X is related to the r.v.s. Y and B, the generic independent

r.v. such that Yn
d
= Y and Bn

d
= B. These three variables satisfy a relation which will be

the distributional equation for X. The distribution of X, or its law L, is the desired ergodic

distribution.

Let P be the one-step transition probability function of the time-homogeneous Markov

chain {Xn}. Let us show that there is an invariant measure. Suppose that Xn = x, x ∈ I =

(0, 1) , and let P (x,A) = P (Xn+1 ∈ A | Xn = x) with A ∈ BI .
For a function f ∈ Cb(I), continuous in I and bounded, and any x ∈ I, we have the

following sequences of relations:

∫

I

f(y)P (x, dy) = E [f(x(1 − Y ) + Y B)]

= E [f(x(1 − Y ) + Y B) | B = 1]P (B = 1)

+E [f(x(1 − Y ) + Y B) | B = 0]P (B = 0)

=

∫ 1

0

(f(x(1 − y) + y)p+ f(x(1 − y))q)Fβ(a,b)(dy).

The conditions on the integrand and the dominated convergence theorem imply that

∫

I

f(y)P (xn, dy) →
∫

I

f(y)P (x, dy) as n→ ∞ ,

for {xn, n ≥ 1} , a convergent sequence of numbers in I such that xn → x as n → ∞. This

means that P satisfies the weak-Feller property (see Appendix: Markov Chains). The first

theorem in the Appendix assures that there exists an invariant measure, say µ, corresponding

to the kernel P . Moreover, limn→∞Xn
d
= X, where X is a r.v. with distribution µ, and the

three variables X, Y,B satisfy the following distributional equation:

X
d
= X(1 − Y ) + Y B. (5)

We are going to use this relation to find the moments of X.

Notice first that in the relation Xn+1 = Xn(1− Yn) + YnBn, the variables Yn and Bn are

generated independently of the value Xn. Since Yn
d
= Y, Bn

d
= B, we can consider X, Y and
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B to be independent. Now, using the linearity of the expectation, the independence of the

random quantities involved, and the fact that E [B] = p, E [Y ] = a
a+b

, we easily find that

E[X] = p. The next is to find the second moment of X. We have

E
[
X2
]

= E
[
(X(1 − Y ) + Y B)2]

= E[X2]E[(1 − Y )2] + 2E[X]E[(1 − Y )Y ]E[B] + E[Y 2]E[B2].

Since E [Y (1 − Y )] = ab
(a+b)(a+b+1)

, E [Y 2] = a(a+1)
(a+b)(a+b+1)

, E [(1 − Y )2] = b(b+1)
(a+b)(a+b+1)

, and

E [B2] = p, we find E[X2] =
2b

a+1
p+1

2b
a+1

+1
p = a+1+2bp

a+1+2b
p.

The last statement can be obtained from the equation (5) and the Newton’s binomial

formula:

E [Xn] = E [(X(1 − Y ) + Y B)n] = E

[
n∑

i=0

(n
i
)

(X(1 − Y ))n−iY i

]
.

Now we can proceed to the detailed analysis of the cases cited before.

In the next proof we make use of the following properties of beta-distribution (see Gupta

and Nadarajah (2004)). If a r.v. ξ is β(a, b)-distributed, the following property can be easily

derived using the Beta function,

E[ξk+1−i(1 − ξ)i] =
a + k − i

a+ k + b
E[ξk−i(1 − ξ)i] for k = 1, 2, ... and i = 0, 1, ...k. (6)

Proposition 2 (Case 1) Suppose that the distribution of Yn is β(1, b) and pn = p ∈ (0, 1)

for all n = 1, 2, .... Then, Xn
d→ X as n→ ∞, where the r.v. X ∼ β(bp, bq).

Proof. We proceed by induction, showing that

E
[
Xk+1

]
=
bp + k

b+ k
E
[
Xk
]
, k = 0, 1, ... (7)

From Proposition 1 we have E[X] = p and E [X2] = bp+1
b+1

p, and hence

E
[
X2
]

=
bp+ 1

b+ 1
E[X].
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Thus we have the first inductive step. Now, we assume that the moment relation (7) holds

for all i ≤ k, and the goal is to show that (7) is true for k + 1.

Indeed, since X
d
= X(1 − Y ) + Y B, we have

E
[
Xk+1

]
= E

[
(X(1 − Y ) + Y B)k+1

]

=
k+1∑

i=0

(
k + 1

i

)
E(X i)E

[
Y k+1−i(1 − Y )i

]
E(Bk+1−i)

(by (6))

=
k∑

i=0

(k + 1)k!

(k + 1 − i)(k − i)!i!
E(X i)

(1 + k − i)

1 + k + b
E
[
Y k−i(1 − Y )i

]
E(Bk+1−i)

+E(Xk+1)E((1 − Y )k+1)

(since (7) holds for i ≤ k)

=
(k + 1)

k + 1 + b

(
k∑

i=0

k!

(k − i)!i!
E(X i)E(Y k−i(1 − Y )i)E(Bk−i) − (1 − p)E(Xk)E((1 − Y )k)

)

+
bp+ k

b+ k

b

b+ k + 1
E(Xk)

=
(k + 1)

k + 1 + b

(
E(Xk) − (1 − p)

b

b+ k
E(Xk)

)
+
bp + k

b+ k

b

b+ k + 1
E(Xk)

=
bp + k

b+ k
E(Xk).

From (7) we easily conclude that

E
[
Xk+1

]
=

k∏

i=0

bp+ i

b+ i
, k = 0, 1, 2, ...

Which corresponds to the moments of β(bp, bq) as in (4), we conclude that X ∼ β(bp, bq).

The proof of the next result is not based on the moments, instead we work directly with

the distributions.
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Proposition 3 (Case 2) We assume now that for any n, the distribution of Yn is β(a, a+

1). Then the Markov chain Xn n = 1, 2, ... has an ergodic distribution which is the uniform

distribution on (0, 1).

Proof. The idea is as follows. Let us assume that the ergodic variable X is U(0, 1).

Then we show that the distribution of the r.v. X(1 − Y ) + Y B, is also U(0, 1). Finally we

use the fact that the distributional equation (5) has only one solution/distribution. Thus we

want to show that

P (X(1 − Y ) + Y B ≤ x) = P (X ≤ x) = x for each x ∈ (0, 1) .

Indeed, take any x ∈ (0, 1) . Then by the total probability formula,

P (X(1 − Y ) + Y B ≤ x)

= P (X(1 − Y ) + Y B ≤ x | B = 0)P (B = 0)+

P (X(1 − Y ) + Y B ≤ x | B = 1)P (B = 1)

=
1

2
(P (X(1 − Y ) ≤ x) + P (X(1 − Y ) + Y ≤ x))

=
1

2

(∫ 1

0

P

(
X <

x

1 − y

)
fY (y)dy +

∫ 1

0

P

(
X <

x− y

1 − y

)
fY (y)dy

)

(using the fact that X ∼ U(0, 1), by assumption)

= 1
2

(∫ 1−x
0

x
1−y

ya−1(1−y)a

∫ 1
0 y

a−1(1−y)ady
dy +

∫ 1

1−x
ya−1(1−y)a

∫ 1
0 y

a−1(1−y)ady
dy
)

+1
2

(∫ x
0

(x−y)
1−y

ya−1(1−y)a

∫ 1
0
ya−1(1−y)ady

dy
)

= 1
2

(
x
∫ 1−x
0

ya−1(1−y)a−1

1
2

∫ 1
0 y

a−1(1−y)a−1dy
dy +

∫ 1

1−x
ya−1(1−y)a

∫ 1
0 y

a−1(1−y)ady
dy
)

+1
2

(∫ x
0

(x−y)
1−y

ya−1(1−y)a

∫ 1
0
ya−1(1−y)ady

dy
)

= 1
2

(
2x
(
1 −

∫ 1

1−x
ya−1(1−y)a−1

∫ 1
0 y

a−1(1−y)a−1dy
dy
)

+
∫ 1

1−x
ya−1(1−y)a

∫ 1
0 y

a−1(1−y)ady
dy
)

+1
2

(
x
∫ x
0

ya−1(1−y)a−1

∫ 1
0 y

a−1(1−y)ady
dy −

∫ x
0

ya(1−y)a−1

∫ 1
0 y

a−1(1−y)ady
dy
)

= 1
2

(
2x
(
1 −

∫ 1

1−x
ya−1(1−y)a−1

∫ 1
0
ya−1(1−y)a−1dy

dy
)

+
∫ 1

1−x
ya−1(1−y)a

∫ 1
0
ya−1(1−y)ady

dy
)

+1
2

(
x
∫ x
0

ya−1(1−y)a−1

1
2

∫ 1
0 y

a−1(1−y)a−1dy
dy −

∫ x
0

ya(1−y)a−1

∫ 1
0 y

a−1(1−y)ady
dy
)
.
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Since ∫ 1

1−x

ya−1(1 − y)a−1

∫ 1

0
ya−1(1 − y)a−1dy

dy =

∫ x

0

ya−1(1 − y)a−1

∫ 1

0
ya−1(1 − y)a−1dy

and ∫ 1

1−x

ya−1(1 − y)a
∫ 1

0
ya−1(1 − y)ady

dy =

∫ x

0

ya(1 − y)a−1

∫ 1

0
ya−1(1 − y)ady

dy,

these terms cancel out each other and the whole expression equals x. Hence the distribution

of X(1 − Y ) + Y B is effectively U(0, 1).

Remark. In general, for arbitrary a, b and p, the ergodic distribution of the Markov chain

{Xn, n = 0, 1, 2...} may be different from beta-distribution. If however, the parameters of

the Markov chain, say á, b́, ṕ are close to the values a, b, p in the previous cases, then

the distribution of X (i.e. the limiting distribution of the Markov Chain or, its ergodic

distribution) would be “close” to the distribution β( 2b
a+1

p, 2b
a+1

q). If we plug the parameters

of Cases 1 and 2 into β( 2b
a+1

p, 2b
a+1

q), we obtain the corresponding ergodic distributions.

For Case 3, 4 and 5 we have that pn is a function of Xn, so Bn is not independent of Xn.

We are going to analyze these cases.

Similarly to Proposition 1 we can prove that, as n→ ∞, Xn
d→ X for some r.v. X. In this

case pn is a continuous function x, where x = Xn, on x ∈ [0, 1]. Actually, pn = 1−Xn. As in

the proof of Proposition 1, we can find the first and the second moments of the stationary

distribution as follows:

E[X] = E[X(1 − Y ) + Y B] = E[X]E[1 − Y ] + E[Y ]E[B],

hence E[X] = 1
2
. Then

E[X2] = E
[
(X(1 − Y ) + Y B)2]

= E[X2]E[(1 − Y )2] + 2E[XB]E[(1 − Y )Y ] + E[Y 2]E[B2]

= E[X2]E[(1 − Y )2] + 2E[X]E[1 −X]E[(1 − Y )Y ] + E[Y 2]E[B2].

Therefore E[X2] = 1
2
a+b+1
a+2b+1

.

Now we can use these observations in order to prove the following result.

Proposition 4 (Case 3) Suppose the distribution of Yn is β(1, b) and let pn = 1−Xn for

n = 1, 2, .... Then Xn
d→ X as n→ ∞, where X ∼ β( b

2
, b

2
).
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Proof. As in Proposition 2, we use induction arguments. We verify that the moments

of the stationary distribution are equal to the moments of the β( b
2
, b

2
)-distribution. This will

follow from the recurrent relation

E
[
Xk+1

]
=

b
2

+ k

b+ k
E
[
Xk
]
, k = 0, 1, ... (8)

We have just stated that E[X2] =
( b
2
+1)

(b+1)
1
2

=
( b
2
+1)

(b+1)
E[X], so the first induction step is checked.

Notice that, for any i and j, we have

E[X iBj ] = E[X iBj | B = 1]P (B = 1) + E[X iBj | B = 0]P (B = 0),

E[X i](1 −E[X]) = E[X i] × 1

2
= E[X i]E[Bj ].

From these relations we see that the induction proof remains the same as in Proposition 2

when p = 1
2
.

Remark. Similarly to Case 2, in Case 4 the invariant distribution is U(0, 1) because

P (B = 1) = 1 −E[X] = 1
2
, so the proof of Proposition 3 remains the same.

Remark. For Case 5, if Xn = 1, P (Bn = 1) = 1, then Xn+1 = Xn(1 − Yn) + YnBn = 1;

but if Xn = 0, then Xn+1 = 0. Hence {0} and {1} are absorbing points and therefore δ{0}

and δ{1} are invariant measures (where δx0 stands for the delta-Dirac at point x0).

Remark. In Rao (1984) and Meyn & Tweedie (1996), it is pointed out that the ergodic

distribution of Markov chains often comes as the solution of an integral equation. In our

cases we have that the ergodic distribution is the one with distribution function F that solves

the integral equation

F (x) =

∫ 1

0

P ((u(1 − Y ) + Y B) < x)F (du), x ∈ (0, 1),

where Y ∼ Beta and B ∼ Bernoulli. Therefore, we can see the ergodic distribution of the

Markov chain under study as the unique solution of an integral equation. If the distribution

function F has density f , the integral equation can be seen as
∫ x

0

f(u)du =

∫ 1

0

P ((u(1 − Y ) + Y B) < x) f(u)du. (9)

All this motivated us to include a chapter showing the use of Monte-Carlo techniques to

approximate solutions of integral equation.
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2.2 Appendix: Markov Chains

In this section we state some basic notation and results from ergodic theory which we use

in this Chapter (see Hernández-Lerma & Lasserre (2003) and Meyn & Tweedie (1996) for

details).

Let X = {Xn, n = 0, 1, ...} be a sequence of r.v.s. on the probability space (Ω,F , P )

with values in the measurable space (I,BI) . We say that X is a discrete-time homogeneous

Markov chain (MC) if

P (Xn+1 ∈ B | X0, ..., Xn−1, Xn) = P (Xn+1 ∈ B | Xn) for all B ∈ B, n = 0, 1, ...

This is called the Markov property. It means that conditional on its present value, the future

is independent of the past.

An essential characteristic of the MC X is its 1 − step transition probability function

P (x,B) := P (Xn+1 ∈ B | Xn = x) x ∈ I, B ∈ BI .

It is also called a probability kernel, or simply a kernel.

Definition A probability measure ν on I is said to be an invariant measure for P, and

also for the MC X, if

ν(B) =

∫

I

P (x,B)ν(dx) for all B ∈ BI .

A set B ∈ BI is invariant for P if P (x,B) = 1 whenever x is in B. An invariant measure ν

is said to be ergodic if ν(B) = 0 or ν(B) = 1 for every invariant set B.

Useful criteria to determine if a MC admits invariant measures are the weak- and the

strong-Feller properties. We say that the transition probability function P is weak-Feller if

for every sequence {xn} in I such that xn → x ∈ I as n→ ∞, and every bounded continuous

function f on I, the following holds:

∫
f(y)P (xn, dy) →

∫
f(y)P (x, dy) as n→ ∞.
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Similarly, P is called strong-Feller if for every bounded measurable function f on I,

∫
f(y)P (xn, dy) →

∫
f(y)P (x, dy).

Theorem Let I be a compact metric space, and P a weak-Feller transition probability

function of a Markov chain on I. Then P admits an invariant measure.

In the following result we use the notation

P (n)f(x) = E [f (Xn) | X0 = x] .

Theorem(Birkhoff´s individual ergodic theorem) Let µ be an invariant measure

for the Markov chain with transition probability function P . For every function f ∈ L1(µ),

there exists a function f ∗ ∈ L1(µ) such that

(i) P (n)f → f ∗ as n→ ∞ µ− a.s. and (ii)

∫

I

f ∗dµ =

∫

I

fdµ.
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3 Models based on Random Sums of Random Vari-

ables

Motivation. In different areas such as biology, physics, finance, sociology we have to study

or analyze variables or characteristics of phenomena which are random in nature and evolve

over time, i.e. these are stochastic dynamical phenomena. The observations taken over time

form time series and the process that generates these observations is called a stochastic

process or a random process. If in general the time series shows any presence of a pattern,

we say that there is statistical regularity on the series. This is what we called stability

property of a random dynamical system. Whitt (2002) presents simulations of probabilistic

models to show intuitively the meaning of the statistical regularity. In Probability theory,

any statistical regularity is a reflection of the existence of a limit of some rescaled stochastic

process. The rescaling corresponds to a specific transformation of random quantities that

define the random system.

In this chapter, we study the statistical regularity of time series generated by specific

type of stochastic processes. These processes are a general version of the CTRW, we call

them Generalized Continuous Time Random Walks, GCTRW for short. One of the

motivations is based on a model of random sums of random variables. It is important to

note that the behaviour of the model resembles a discrete scheme, even though the time

parameter is continuous.

3.1 The compound Poisson process

The compound Poisson process is usually defined as

St =

Nt∑

i=1

Xi, t ≥ 0,

where X1, X2, ... is a sequence of i.i.d. r.v. and Nt, t ≥ 0, is a Poisson process.

In this chapter we want to study limits of continuous-time stochastic processes defined

similarly as the compound Poisson process. Consider the following sequence of compound
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Poisson processes:

S
(n)
t =

N
(n)
t∑

i=1

X
(n)
i , n = 1, 2, ..., t ≥ 0.

Here N
(n)
t , t ≥ 0, is a homogeneous Poisson process with parameter n, and X

(n)
i i = 1, 2, ...

are Bernoulli independent r.v.s (also independent of the Poisson process). We assume that

X
(n)
i = ± 1

n
each with probability 1

2
. It can be proved that for any fixed t, t ≥ 0, the limit

limn→∞S
(n)
t exits and it is normally distributed N(0, t). Moreover, the sequence of stochastic

processes {Sn} converge (in an appropriate sense) to a Brownian Motion.

In the above model, the Poisson process N (n) corresponds to a counting process with

exponentially distributed interarrival times.

Our goal is to study a similar but more general case when X
(n)
i are arbitrary r.v.s which

in some sense tend to be “small” and N (n) is an arbitrary counting process, tending to be

“big”. We combine the two random effects, one “small” and one “big”, to obtain in the limit

a proper random or non-random quantity.

3.2 Generalized continuous time random walks

After the above discussion, we turn to stochastic processes that behave like the Compound

Poisson process. We have in mind the following description: Suppose that at time t the

process has value St and stays there for some random time τ (called interarrival time), then

it moves up or down according to the value of a r.v. X ∈ R. Hence at time t + τ the

value of the process will be St+τ = St + X. When the random time τ ∼ Exp, the process

S is a Compound Poisson process. If τ is a positive r.v. with arbitraty distribution, then

the non-negative and non-decreasing process N (n) is a renewal process, or counting process

in which case the process S is usually called Continuous-time Random Walk (CTRW), see

Scalas (2005) for a general review. Other names for S are Increment process (Korolyuk and

Limnios (2004)) or Renewal-Reward processes (Grimmett and Stirzarker (2004) and Whitt

(2002)).

Generally τ represents the time when the process remains idled, and therefore it is a

positive variable.
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Definition The CTRW process is defined as follows:

St =

Nt∑

i=1

Xi, t ≥ 0,

where Nt = max
{
k :
∑k

i=1 τi ≤ t
}

, X1, X2, ... are r.v.s with values in R and τ1, τ2, ... are

positive r.v.s (the interarrival times) and S0 = 0. The process Nt, t ≥ 0 is called the Inverse

process to the sum
∑n

i=1 τi (see Whitt (2002) p.201), and it is worth to notice that we have

Nt = min

{
k :

k∑

i=1

τi > t

}
− 1.

The classical Compound Poisson process is a particular example when the interarrival

times are exponential r.v.s.

Processes of this kind have been studied by many authors. There is a huge literature,

books and articles, some of them are included in our list of references. Mitov and Nadarajah

(2004) deals with the limit behaviour in distribution of random sums, i.e. for fixed time t.

Lin and Stoyanov (2002) and Gut (2003) study the so-called moment determinacy of the

distribution of these random sums. Asmussen (2002) uses this model applied to ruin theory.

Eberlein and Hammerstein (2004) analyze different aspects and applications of this model

in mathematical finance. Weron (2002) uses this model for pricing options.

Here we will study a more general model in which τ1, τ2, ... are arbitrary r.v.s. in R, so

we allow τi to take also negative values. We have the following definition.

Definition (GCTRW) Suppose {Xi, i = 1, 2, ...} and {τi, i = 1, 2, ...} are sequences of r.v.s.

Then following process

S =

{
St =

Nt−1∑

i=1

Xi, t ≥ 0

}
,

is said to be a Generalized Continuous-time Random Walks (GCTRW).

Here N = {Nt, t ≥ 0} is the inverse process triggered by {τi}∞i=1 and defined as follows:

Nt = min

{
k :

k∑

i=1

τi > t

}
, t ≥ 0.
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Notice that Nt+1 corresponds to the first passage time of the continuous-time stochastic

process
{∑btc

i=1 τi, t ≥ 0
}

, which is a simple CTRW.

It is well-known that under some conditions and a proper type of convergence, the se-

quence of Compound Poisson processes has a limit which is a Brownian Motion. More results

are available in the literature about the limit of the scaled CTRW. Under some assumptions

the limit of scaled CTRW is a Lévy process (see Whitt (2002), Becker-Kern et al (2004)).

This, however, is not always the case as shown by Meerschaert and Scheffler (2001).

Our goal now is to find conditions under which a sequence of GCTRW, after appropriate

rescaling, has a proper limit-process.

We study the limit behaviour of the following sequence of GCTRW:

S
(n)
t =

N
(n)
t∑

i=1

X
(n)
i , t ≥ 0, n = 1, 2, ...

Here
{
X

(n)
i , i, n ∈ N

}
is a double array of r.v.s, and

{
N

(n)
t , n ∈ N

}
is a sequence of inverse

processes, where for each n the process N
(n)
t is triggered by the sum of

{
τ

(n)
i , i ∈ N

}
.

We cite some results related to this problem.

Korolyuk and Limnios (2004) work with a general version of the Compound Poisson

process in risk theory, they prove prove weak convergence of the scaled version to a Lévy

process.

In Becker-Kern et al (2004), Meerschaert and Scheffler (2004), CTRW is used to model

the motion of particles. Assuming that the r.v.s. involved have a domain of attraction to

stable distributions, they prove convergence in distribution of the sequence of CTRW.

In Chapter VIII of Jacod and Shiryaev (2003), using the triplet of Characteristics of a

Semimartingales, it is shown how some processes, that include the GCTRW, converge to a

process with independent increments. This is a more general class of stochastic processes

than the so-called Lévy Processes.

We are going to show that, under appropriate conditions, the sequence of processes

GCTRW converges to a Lévy process of the type of subordination of a stable process.
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3.3 Convergence of stochastic processes

We have to make precise the concept of convergence of stochastic processes.

We are given a probability space (Ω,F , P ), where all random variables or processes are

defined. If X is a random element on this space, then the values of X can be real numbers,

n−dimensional vectors or functions. In this section S is the space of continuous functions C

or the space of cádlág functions D which are subspaces of the space of all functions R[0,∞).

If X is a random element and A any measurable set in S, P ({ω : X(ω) ∈ A}) is the prob-

ability measure on S or the law ofX (Notation: L(X)). For a r.v. X, F (x) = PX((−∞, x]) =

P ({ω : X(ω) ∈ (−∞, x]}) is a d.f., and for a random vector X in Rk the d.f. is

FX(x1, ..., xk) = PX((−∞, x1] × ...× (−∞, xk])

= P ({ω : X1(ω) ∈ (−∞, x1], ..., Xk(ω) ∈ (−∞, xk]}) .

The d.f.s are used to define convergence in distribution of r.v.s and random vectors. If

X is a stochastic process, then the probability measure PX is a more abstract object. It is

necessary to extend the concept of the convergence of the d.f.s for stochastic processes

Suppose X(1), X(2), ... is a sequence of r.v.s. (or k-dimensional random vectors), X(n) has

a d.f. Fn, and let X be another r.v. (or k-dimensional random vector) with d.f. F . We say

that
{
X(n)

}
convergences in distribution to X (notation: X(n) d→ X) if Fn(x) → F (x) as

n→ ∞ for all x ∈ R (or Rk), which are points of continuity of F .

Theorem Let X(1), X(2), ... a sequence of r.v.s and F1, F2, ... their d.f.s The following two

statements are equivalent:

(1) E
[
f(X(n))

]
→ E [f(X)] as n→ ∞ for all bounded continuous functions f : R → R;

(2) Fn(x) → F (x) as n→ ∞ for any x which is a point of continuity of F .

Based on this result, the concept of convergence in distribution can be extended to cover

more general sequences of random elements when it is not straightforward to talk about d.f.s.

Definition Given a sequence of random elements X(1), X(2), ... in the space S endowed
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with a topology which generates a sigma algebra. We say that X(n) d→ X as n→ ∞ if

E
[
f(X(n))

]
→ E [f(X)] as n→ ∞

for all bounded continuous functions f from S to R.

This can be written as follows:

∫

S

f(ω)Pn(dω) →
∫

S

f(ω)P (dω) as n→ ∞,

where P, P1, P2, ... are the corresponding probability measures generated by X,X(1), X(2), ....

This is called convergence in distribution or weak convergence.

We can think of the probability measures on one space S as a space of elements with a

topology. Given a measure µ on S, an ε− neighborhood of µ is the set of all measures ν on

S such that ∣∣∣∣
∫

S

f(ω)µ(dω)−
∫

S

f(ω)ν(dω)

∣∣∣∣ < ε

for a finite collection of continuous functions f : S → R. These sets topologize the space of

measures on S. When S is separable and complete, this topology can be defined by the so-

called Prohorov metric (see Billingsley (1999)). So, when we talk about the weak-convergence

of a sequence of random elements, we actually consider the convergence of the probability

measures of the corresponding random elements in the topologized space of measures.

These concepts allow us to determine convergence in distribution for stochastic processes.

Let
{
X(n), n ≥ 1

}
be a sequence of stochastic processes. We have thatX(n) d→ X as n→ ∞,

if ∫

S

f(ω)Pn(dω) →
∫

S

f(ω)P (dω), n→ ∞,

for all bounded continuous function f on S. Here Pn is the probability measure corresponding

to X(n), n = 1, 2, 3, ... and P of X. It is also said that the measures Pn converges weakly to

P and this is denoted by Pn =⇒ P.

The following result provides a method to verify weak convergence.
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Theorem (Billingsley (1999), p58) Let
{
X(n), n ≥ 1

}
be a sequence of stochastic processes.

We have that X(n) d→ X as n→ ∞, if the corresponding sequence of measures {Pn, n ≥ 1}
is relatively compact and the finite dimensional distributions of X(n) converge to those of X.

For a stochastic process X, the finite dimensional distributions are

{
F (t1, ..., tk; x1, ..., xk), t1, ..., tk ≥ 0, (x1, ..., xk) ∈ R

k
}

=

{
P ({ω : Xt1(ω) ∈ (−∞, x1], ..., Xtk(ω) ∈ (−∞, xk]}) , t1, ..., tk ≥ 0, (x1, ..., xk) ∈ R

k
}
.

Another way to verify the relative compactness is to use the property called tightness. A

family of probability measures {Pn, n ≥ 1} on S is tight if for every ε > 0 there exists a

compact set K ⊂ S such that Pn(K) > 1 − ε for all n.

It is important to mention that if S is separable and complete, then relatively compactness

and tightness are equivalent properties. There are different ways to prove tightness, see

Billingsley (1999).

Another way to prove week convergence is to use the characteristic triplet of semi-

martingales (see Jacod and Shiryaev (2003)).

The following is an important result for convergence of continuous function of random

elements (see Whitt (2002), p.85 or Billingsley (1999), p.20).

Theorem (Continuous-Mapping Theorem) Consider a sequence of random elements
{
X(n), n ≥ 1

}
in the space S, endowed with a topology that generates the sigma algebra.

Let X be another random element in S such that X(n) d→ X as n→ ∞. If g is a continuous

function from S to another topological space S∗, then

g(X(n))
d→ g(X(n)) as n→ ∞.

3.3.1 Example of convergence of compound Poisson processes

Consider the following example of a sequence of stochastic processes in the space D that

converges in distribution to a Brownian motion which, as is well-known is in the space C.
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Let, for each n, n = 1, 2, ...,
{
X

(n)
i , i = 1, 2, ...

}
be a sequence of independent Bernoulli r.v.s

of the following form:

P

(
X

(n)
i = ± 1√

n

)
=

1

2
, i = 1, 2, ..., n = 1, 2, ...;

Let
{
N (n), n ≥ 1

}
be a sequence of Poisson processes, N (n) with parameter n, they all are

independent of
{
X

(n)
i , i = 1, 2, ...

}
for each n = 1, 2, ....

We want to analyze the limit of the sequence of compound Poisson processes

S(n) =




S
(n)
t =

N
(n)
t∑

i=1

X
(n)
i , t ≥ 0




 , n = 1, 2, ...

Proposition 5 For the sequence
{
S(n), n = 1, 2, ...

}
defined above, we have convergence of

the finite dimensional distributions to the Brownian motion B, i.e.

S(n) f.d.d→ B.

This is a well-known result (see Billingsley (1999), p.154). We will present a proof of it

using the Linderberg´s CLT (in the Appendix “Sums of random variables”) and the following

proposition.

Proposition 6 Let N be a Poisson random variable with parameter λ and X1, X2, ... be

independent Bernoulli r.v.s, where, for fixed ∆ > 0, and p ∈ (0, 1),

P (Xi = ∆) = p and P (Xi = −∆) = 1 − p = q, i = 1, 2, ...

Then
N∑

i=1

Xi
d
= ∆(N∗

1 −N∗
2 ),

where N∗
1 and N∗

2 are independent Poisson r.v.s with parameters pλ and qλ, respectively.

Proof. The proof is just checking that the ch.f. of
∑N

i=1Xi is equal to the ch.f. of ∆(N∗
1 −

N∗
2 ), in which case the distributions of the r.v.s are the same.
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Proof. (of Proposition 5) Without loss of generality, fix t = 1. From Proposition 6 and

the fact that a sum of independent Poisson r.v.s is again Poisson, we have the following:

S
(n)
1

d
=

n∑

i=1

1√
n

(N
(n)
i −M

(n)
i ),

where N
(n)
i and M

(n)
i i = 1, 2, ... are independent Poisson r.v.s each with parameter 1

2
. Now

we use the Linderberg´s theorem to this sum of r.v.s. The first two conditions can be easily

checked.

Following the notation in the Linderberg´s theorem, we define, for ε ≥ 0, and any n, i,

En,i,ε :=

∫

|x|>ε
x2dµn,i(x) =

∑

{x:|x|>ε and x∈Sn}
x2P

[
1√
n

(N
(n)
i −M

(n)
i ) = x

]
.

Here µn,i(x) is the probability measure of the random quantity 1√
n
(N

(n)
i −M

(n)
i ) and

Sn :=
{
s : s = m√

n
, m ∈ Z

}
, which is a discrete subset of the real line, is the set of values of

the r.v. 1√
n
(N

(n)
i −M (n)

i ). By the symmetry property of the r.v. 1√
n
(N

(n)
i −M (n)

i ), we obtain

En,i,ε := 2
∑

{x:x>ε and x∈Sn}
x2P

[
1√
n

(N
(n)
i −M

(n)
i ) = x

]

= 2
∑

{x:x>ε and x∈Sn}
x2P

[
N

(n)
i −M

(n)
i = x

√
n
]
.

Using Proposition 6 again, we have

P
[
N

(n)
i −M

(n)
i = m

]
= P

[
N∑

i=1

Xi = m

]
,

where N is a Poisson r.v. with parameter 1, and Xi, i = 1, 2, ... are Bernoulli independent

r.v.s taking values 0 or 1 each with probability 1
2
. Then, by the total probability formula, we

have that

P

[
N∑

i=1

Xi = m

]
= 2

∑

k≥m
P

[
N∑

i=1

Xi = m | N = k

]
P [N = k]

= 2
∑

k≥0

P

(
m+2k∑

i=1

Xi = m

)
P [N = m+ 2k]
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= 2
∑

k≥0

(
m+ 2k

m

)(
1

2

)m+2k (
e−1

(m+ 2k)!

)

= 2
1

m!

(
1

2

)m
e−1
∑

k≥0

1

(2k)!
≤ 2

1

m!

(
1

2

)m
.

From this we have that

En,i,ε ≤ 2
∑

m>ε
√
n

m2

(
2

(
1
2

)m

m!

)
= 2

∑

m>ε
√
n

m(m− 1 + 1)

(
2

(
1
2

)m

m!

)

=
∑

m>ε
√
n

(
1
2

)m−2

(m− 2)!
+ 2

∑

m>ε
√
n

(
1
2

)m−1

(m− 1)!

=

( (
1
2

)r−2

(r − 2)!
+ 2

)
∑

m>ε
√
n

(
1
2

)m−1

(m− 1)!

(here r is the first integer greater than ε
√
n)

=




(

1
2

)[ε√n]+1−2

([ε
√
n] + 1 − 2)!

+ 2






2 −

(
1 −

(
1
2

)[ε√n]
)

1 − 1
2




=




(

1
2

)[ε√n]−1

([ε
√
n] − 1)!

+ 2




(

1

2

)[ε
√
n]−1

,

where [ε
√
n] is the integer part of ε

√
n. Therefore

lim
n→∞

k(n)∑

i=1

En,i,ε ≤ lim
n→∞

n




(

1
2

)[ε√n]−1

([ε
√
n] − 1)!

+ 1




(

1

2

)[ε
√
n]

= 0.

Since the three conditions in the Lindeberg´s theorem are satisfied, we can conclude that

S
(n)
1

d→ Z as n→ ∞, where Z is a r.v. normally distributed with mean 0 and variance 1. A

similar conclusion is true for times t different from 1: limn→∞ S
(n)
t is a normally distributed

r.v. with mean 0 and variance t.

Recalling now that the process S(n) has independent increments, it is straightforward to

obtain the convergence of the finite dimensional distributions of S(n) to the corresponding

finite dimensional distributions of the Brownian motion.
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3.4 Limit of the scaled GCTRW

Our goal is to study the limit of the scaled GCTRW (recall Defintion (GCTRW))

S =

{
St =

Nt−1∑

i=1

Xi, t ≥ 0

}
,

where

Nt = min

{
k :

k∑

i=1

τi > t

}
, t ≥ 0.

The first thing we can say is that the trajectories of this processes are functions in the

space D([0,∞)) and in general, they do not have independent increments and, they are not

Markov processes.

3.4.1 The stable conditions

We impose the following conditions on the GCTRW, which we call the stable conditions:.

There exists a sequence of increasing positive numbers {ci, i = 1, 2, ...} and sequences of real

numbers {ai, i = 1, 2, ...} and {bi, i = 1, 2, ...} such that:

(i) for r.v.s X1, X2, ..., i.i.d.,
∑n

i=1
Xi

cn
+ an converges to a stable r.v., and,

(ii) for r.v.s τ1, τ2, ..., i.i.d, and independent from {Xi},
∑n

i=1
τi
cn

+bn converges to a stable

r.v.

That is, X1 and τ1 belong to the domain of attraction of stable laws. Notice that both

share the same scaling factor cn, this is crucial for our analysis.

Now, consider the following sequence of GCTRW:

S(n) =




S
(n)
t =

N
(n)
t −1∑

i=1

X
(n)
i , t ≥ 0




 , n = 1, 2, ...

with

X
(n)
i

d
=
X1

cn
+
an
n

and τ
(n)
i

d
=
τ1
cn

+
bn
n
.

With these assumptions we can find the process-limits of the following random walks in

continuous time (simple CTRWs):

X(n) =

{
X

(n)
t =

bntc∑

i=1

X
(n)
i , t ≥ 0

}
and Z(n) =

{
Z(n)
s =

bntc∑

i=1

τ
(n)
i , s ≥ 0

}
.
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Under the stable conditions it is known that X(n) d→ X and Z(n) d→ Z in the J1 topology,

where X and Z are stable processes (see Whitt (2002)).

Proposition 7 For the random sequences of processes
{
S(n)

}
and the conditions described

above, we have that

S(n) f.d.d→ S as n→ ∞,

where S is the stable process X subordinated to Y, and Y is the first passage time of the

stable process Z.

Proof. Let us show first that S
(n)
t

d→ XYt
, as n → ∞, for each t ≥ 0. We know that for

each t ≥ 0, X
(n)
t

d→ Xt as n→ ∞. Also, for fixed t and any positive number r

lim
n→∞

P

(
N

(n)
t − 1

n
≤ r

)
= lim

n→∞
P

(
min

{
k :

k∑

i=1

τ
(n)
i > t

}
≤ nr + 1

)
(10)

= lim
n→∞

P

(
k∑

i=0

τ
(n)
i > t, for some k = 1, 2, ..., nr + 1

)

= lim
n→∞

P




bns+1c∑

i=0

τ
(n)
i > t, for some s ∈ [0, r]





= P (Zs > t, for some s ∈ [0, r]) .

This corresponds to the probability that the first passage time of the stable process {Zs, s > 0}
to the set (t,∞) occurs before time r. Hence, for fixed, t, we have that

N
(n)
t

n

d→ Yt as n→ ∞.

By the Transfer Theorem (in the Appendix “Random sums of random variables”),

S
(n)
t

d→ XYt
as n→ ∞ for each t ≥ 0.

Since N
(n)
s ≤ N

(n)
t always, for s < t and for all n, then Ys ≤ Yt. This means that Y is an

increasing process; the process

S = {XYt
, t ≥ 0} (11)

is well defined as a subordination.
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If s < t, we have that

S
(n)
t =

N
(n)
t −N(n)

s∑

i=1

X
(n)
i +

N
(n)
s∑

i=1

X
(n)
i for any n

and, by the Transfer Theorem again,

lim
n→∞

S
(n)
t = XYt−Ys

+XYs
for all s and t, s < t.

Since Yt − Ys is a stopping time (see Appendix “First passage time of a Lévy process”),

we can apply the Strong Markov property (see Applebaum (2004), p.83) to see that

XYs

d
= XYt−Ys+Ys

−XYt−Ys
, thus

St
d
= XYt−Ys

+XYs
.

Then, it is possible to show that
(
S

(n)
t1 , ..., S

(n)
tk

)
d→ (St1 , ..., Stk) as n → ∞ for any finite

collection of times t1, ..., tk, k = 2, 3, ... This proves converges of the corresponding finite

dimensional distributions.

3.4.2 Particular cases for the stable conditions

From the previous section we know that the limit of the scaled GCTRW is the subordination

S of the form XY . If Y is a Lévy process, then S is a Lévy process, because X is a Lévy

process (Sato (1999), p.197). We want to find conditions to assure that Y, i.e. the first

passage time of the stable process Z, is a Lévy process.

Throughout this section we denote by Sα(σ, β, µ) the stable distribution that characterizes

Z, and (AZ , νZ , γZ) its triplet.

Remark. We know that if P (Zs ≤ Zs− for every s > 0) = 1 and P (lim sups→∞ Zs =

∞) = 1, then Y is a Lévy process with strictly increasing trajectories (see Theorem (First

Passage) in the Appendix). The first condition is equivalent to νZ((0,∞)) = 0. We can

analyze two cases, when α = 2 or α ∈ (0, 2).

1) If α = 2, then the process Z is the Brownian Motion with drift µ and variance 2σ2 (Whitt

(2002), p.111). It means that νZ((−∞,∞)) = 0. Hence, for this case, if µ > 0 (positive
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drift) then with probability one the process goes to ∞, and we conclude that Y is a Lévy

process.

2) If α ∈ (0, 2), then A = 0 and

νZ(B) =

∫

B∩(−∞,0)

λ1

xα+1
dx+

∫

B∩(−∞,0)

λ2

(−x)α+1
dx, for all measurable B ⊂ R

(Sato (1999), p.80). So, for Y to be a Lévy process we need λ2 = 0 and λ1 > 0. In terms of

the stable parameters, we have that νZ((0,∞)) = 0 if and only if β = −1 (Sato (1999), Def.

14.16, p.87).

Remark. From previous Remark we conclude that it is possible for Y to be a Lévy

process if the first and the second moments of τ are finite, depending on how the scaling is

taken in order to obtain a positive drift. If we do not have this condition for the first and

second moments, we need the following condition in terms of the “tails” of τ (Whitt (2002),

Theorem 4.5.1):
P (τ > t)

P (τ < −t) + P (τ > t)
→ 0 when t→ ∞.

For example, this is satisfied if τ is truncated from above but not from below.

Now we present the following example.

Example. Consider the following sequence of GCTRW

S(n) =




S
(n)
t =

N
(n)
t∑

i=1

X
(n)
i , t ≥ 0




 , n = 1, 2, ... (12)

where

P

(
X

(n)
i = ±∆0√

n
+
γ0

n

)
=

1

2
, and P

(
τ

(n)
i = ±∆1√

n
+
γ1

n

)
=

1

2

for all i and n with γ0,∆0,∆1 real numbers and γ1 > 0.

These r.v.s belong to the domain of attraction of a Normal law, and therefore they satisfy

the stable conditions.

Proposition 8 For the sequence constructed in the example above, we have that

S(n) d→ S as n→ ∞ in the topology J1,
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where S is the Generalized Hyperbolic Lévy process, and St ∼ GH with parameters(
−1

2
,

√(
γ1

∆1∆0

)2

+
(
γ0
∆2

0

)2

, γ0
∆2

0
, ∆0

∆1
t, 0

)
.

Because the first paramter of the GH is λ = −1
2
, this corresponds to the NIG process.

Proof. By Proposition 7 we know that S(n) f.d.d.→ S, where S is the stable process X

subordinated to Y, and Y is the first passage time of the stable process Z. We know also

that X(n) d→ X and Z(n) d→ Z in the J1 topology, the processes X and Z are both Brownian

motions with drifts γ0 and γ1, and variances ∆2
0 and ∆2

1, respectively. By the results in

Appendix-“First passage time of Lévy processes” (see Theorem (First Passage)) we know

that Y is a strictly increasing Lévy process. We can also prove that N∗(n)

n

f.d.d.→ Y as n→ ∞,

where N∗(n) is the monotone increasing version of N (n), i.e. N∗(n) is built by joining the

points of N (n) with lines. Then, by Theorem (Convergence in D⇒) (in Appendix “The

Skorohod Topology J1 and convergence”), N∗(n)

n

d→ Y as n→ ∞ in the J1 topology. Since

S
(n)
t =

N
(n)
t∑

i=1

X
(n)
i =

⌊
n

N
∗(n)
t
n

⌋

∑

i=1

X
(n)
i ,

S(n) is a composition of X(n) and N∗(n)

n
. Theorem (Continuous Composition-Maps) (also in

the Appendix “The Skorohod Topology J1 and convergence”) implies that this composition

is a continuous map, because X ∈ C and Y ∈ D→. By the Continuous-mapping Theorem,

S(n) d→ S as n→ ∞ in the topology J1.

Let us find the parameters of S. Since St = XYt
for each t ≥ 0, we have that the conditional

distribution of St given Yt is normal, namely

St | Yt ∼ N(γ0Yt,∆
2
0Yt).

It is known (see Appendix “First passage time of Lévy processes”) that Y is driven by a GIG

distribution and Yt ∼ GIG
(
−1

2
, t

∆1
, γ1

∆1

)
, for t ≥ 0. This allows us to derive (see Appendix

“Some distributions”) that

St ∼ GH
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with parameters as stated. Therfore, S is a Generalized Hyperbolic motion.

Let us mention that Eberlein and Hammerstein (2004) have presented a similar result,

though they do not specify a construction for N
(n)
t . They assume that

{
N (n)n ≥ 1

}
is a

sequence of positive integer-valued r.v.s such that N(n)

n

d→ Y as n→ ∞, with Y ∼ GIG.

3.5 On the problem of moments for random sums

In this section we study the distributions of random sums of r.v.s and their properties

expressed in terms of the moments. This is related to the classical problem of moments, see

Stoyanov (1997, 2004).

In general, we assume that a r.v. ξ has finite all moments mk = E(ξk), k = 1, 2, ... and

we ask the question: Is the distribution L(ξ) uniquely determined by its moment sequence

{mk}? If “yes”, we say that ξ, and also L(ξ), is unique, or M-determinate. If “no”, there are

different distributions with the same moments as ξ, and in this case the distribution L(ξ) is

non-unique, or M-indeterminate.

Several important distributions, such as Normal, Exponential, Poisson, are M-determinate.

Striking examples of distributions which are M-indeterminate are the lognormal distribution

and the cube of a normal distribution. Details can be seen in Stoyanov (1997).

In previous sections, we have studied random sums of random quantities and their limits.

It is natural to analyze the moment determinancy of these limits. This kind of problems

were considered recently, see Lin and Stoyanov (2002) and Gut (2003).

Consider the random sum TN =
∑N

i=1Xi, where Xi i = 1, 2, ... is a sequence of i.i.d. r.v.s

and N is a positive integer-valued r.v., which is independent of {Xi}. Each r.v. is either

M-determinate or M-indeterminate. What can we say about the moment determinacy of the

random sum TN?

One of the conclusions from the above cited papers is that if Xi is M-indeterminate or

N is M-indeterminate, then the random sum TN is M-indeterminate.

However another conclusion is quite non-trivial: There exist random sums such that both

Xi and N are M-determinate, while TN is becoming M-indeterminate.

Here we want to derive conclusions about the moment determinacy of sequences of
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random sums S(n) =
∑N(n)

i=1 X
(n)
i , where N (n) is a sequence of integer-valued r.v. and{

X
(n)
i , i ≥ 1

}
n = 1, 2, ..., is a triangular array. Below are two examples, in the first one the

limit is M-indeterminate, while in the second, the limit is M-determinate.

Proposition 9 (1) There exist a triangular array of r.v.s
{
X

(n)
i , i = 1, 2, ...

}
, n = 1, 2, ...

and a sequence of interger-valued r.v.s N (n) such that S(n) =
∑N(n)

i=1 X
(n)
i is M-determinate

for each fixed n. However limn→∞ eS
(n)

is M-indeterminate.

(2) Contrary, There exist a triangular array of r.v.s
{
X

(n)
i , i = 1, 2, ...

}
, n = 1, 2, ... and

a sequence of interger-valued r.v.s N (n) such that S(n) =
∑N(n)

i=1 X
(n)
i is M-indeterminate for

each fixed n. However, limn→∞ S(n) is M-determinate.

Proof. (1) Consider the r.v.sX
(n)
i

d
= B√

n
, where B is a symmetric Bernoulli r.v., values ±1

each with probability 1
2
, and let N (n) = n. Clearly, for each n, these r.v.s are M-determinate.

The transformation eS
(n)

is M-determinate for any fixed n (Stoyanov (2002), Hausdorff mo-

ment problem). However, we know that the limit limn→∞ eS
(n)

exits and has lognormal

distribution which is M-inderterminate.

So, it is possible to have a converging sequence
{
S(n), n = 1, 2, ...

}
of random sums such

that it is M-determinate for each n, but the limit limn→∞ S(n) is M-indeterminate.

(2) Consider the r.v.s X
(n)
i

d
= Y 3

√
n
, where Y is a Normal r.v. with zero mean and, again,

let N (n) = n. It is known that Y 3 is M-indeterminate (Stoyanov (2004)). It is easy to see

that the sum S(n) =
∑N(n)

i=1 X
(n)
i is also M-indeterminate for each n. The r.v. Y 3√

n
has finite

mean and variance, then by the Central limit theorem we conclude that limn→∞ S(n) is a

normal r.v. which is M-determinate.

Therefore, there exits a sequence of random sums
{
S(n), n = 1, 2, ...

}
with S(n) M-indeterminate

for each n and the limit limn→∞ S(n) being M-determinate.

3.6 Appendix

Here we give a compact review on different aspects of stochastic processes and distributions

that we use throughout this chapter. We recall concepts and results of models such as Lévy

processes and random sums, which are studied in the chapter.
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3.6.1 Lévy, Stable and Self-similar processes, and Subordinations

There is a large class of stochastic process whose paths belong to the space D, this is the

class of Lévy processes. They have been widely studied and applied in different areas. Basic

references are Sato (1999) and Bertoin (1996).

To define a Lévy process we need the notion of stochastic continuity.

Definition A stochastic process S = (St, t ≥ 0) is said to be stochastically continuous

or continuous in probability if, for every t ≥ 0 and ε > 0,

lim
s→t

P (|Ss − St| > ε) = 0.

Definition A stochastic process S = (St, t ≥ 0) on R is a Lévy process if the following

conditions are satisfied.

(1) S0 = 0 a.s.

(2) For any times t0, t1, ..., tn, n ≥ 2 such that 0 ≤ t0 ≤ t1 ≤ ... ≤ tn, the r.v.s St0 , St1 −
St0 , St2 −St1 , ..., Stn −Stn−1 are independent (i.e. the process has independent increments).

(3) The distribution of St+s − Ss does not depend on s (temporally homogeneous).

(4) The process is stochastically continuous.

Notice that a Lévy process is described in terms of its finite dimensional distributions.

The Kolmogorov Extension of Measures Theorem ensures the existence of these mathematical

objects. We consider the Lévy processes as elements of the space D. It is possible to prove

that every Lévy process has a unique cádlág modification (see Protter (2004), p.4). If the

process satisfies conditions (1), (2) and (4) above then it is called an Additive process.

An important concept related to the Lévy processes is the so-called infinite divisibility.

Definition A probability measure µ on R is infinitely divisible if, for any positive inte-

ger m, there is a probability measure µm on R such that

µ = µm ∗ µm ∗ ... ∗ µm = (µm)∗m
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(Equivalently: µ is the m-fold convolution of µm).

A r.v. X in R with probability measure µ is a infinitely divisible if for any integer n we

have the equality X
d
= X1 + ...+Xn, where X1, ..., Xn are i.i.d. r.v.s.

Any infinitely divisible r.v. has a special form of its ch.f., it is called the Lévy-Khintchine

formula (see Sato (1999), p. 37).

Theorem If X is an infinitely divisible r.v. with measure µ, then its ch.f. Ψ(θ) = E(eiθX)

is

ψ(θ) = E(eiθS1) = exp

[
−1

2
Aθ2 + iγθ +

∫

R

(
eiθx − 1 − iθx1{|x|≤1}(x)

)
ν(dx)

]

where A is nonnegative number, ν is a measure on R satisfying ν ({0}) = 0 and
∫

R
min

(
|x|2 , 1

)
ν(dx) < ∞, and γ ∈ R. This representation in terms of (A, ν, γ) is unique.

Conversely, for any choice (A, ν, γ) satisfying the conditions above, there exits an infinitely

divisible distribution µ having E(eiθX) as its ch.f.

Let S = (St, t ≥ 0) be a Lévy process. It is easy to see that for every t, St is an infinitely

divisible r.v. Moreover, if ψ(θ) is the ch.f. of X1 then (ψ(θ))t is the ch.f. of St. In fact, if X is

an infinitely divisible r.v. then the construction of a process via
(
E(eiθX)

)t
is a Lévy process.

There is a one-to-one correspondence between the Lévy processes and the infinitely divisible

distributions (see Sato (1999), Sato (2001), Bertoin (1996)). The parameters (A, ν, γ) are

called the generating triplet of the Lévy process.

The following is a more general result related to additive processes. It is called the Lévy-

Khintchine representation.

Theorem If S = (St) , t ≥ 0 is an additive process, then, for any t ≥ 0, the law of St

is infinitely divisible.

Let us mention only that there is a useful characterization of Lévy processes telling us

that a stochastically continuous temporally homogeneous Markov process starting from zero
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at time zero is a Lévy process. Details can be seen in (Sato (1999), p. 57).

An important class of Lévy processes are the so-called self-similar processes.

Definition A stochastic process S is said to be self-similar with index H > 0 (Hurst param-

eter) if, for all a > 0,

{Sat : t ≥ 0} d
=
{
aHSt : t ≥ 0

}
.

The Brownian Motion is an example of a self-similar process with index H = 1
2
. Also

we know that if Z = {Zt, t ≥ 0} is a stationary process, then St = tHZln t, t > 0 defines a

self-similar process with parameter H (see Whitt (2002), p.97).

Another important class of Lévy processes, related to the self-similar processes, is the

one generated by stable laws.

Definition A r.v. X is said to have a stable law if for any positive numbers a1 and a2,

there is a real number b, and positive number c such that

a1X1 + a2X2
d
= b+ cX,

where X1 and X2 are independent copies of X.

It turns out that the following relation holds for a stable r.v.:

aα1 + aα2 = cα with α ∈ (0, 2].

The number α is called the index of the stable law. It can be proved that a stable r.v. is

infinitely divisible, and its law depends on four parameters, and its ch.f. is given by

lnE(eiθX) =





−σα |θ|α (1 − iβ(signθ) tan(πα

2
)) + iµθ if α 6= 1

−σ |θ| (1 − iβ π
2
(signθ) ln(|θ|)) + iµθ if α = 1.

A standard notation is X ∼ Sα(σ, β, µ) (see Whitt (2002), p.111). The r.v. ξ ∼ N(µ, σ2) is

a stable r.v. S2(σ, 0, µ). The Cauchy r.v. is stable S1(σ, 0, µ). The Lévy distribution is stable

S1/2(σ, 1, µ).
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We say that a stochastic process S = (St, t ≥ 0) is a stable motion if its increments are

stable r.v.s.

Except the cases when α = 1 and β 6= 1, the stable process S is a self-similar process,

and it satisfies the following property:

Sat
d
= aHSt for any t ≥ 0 and a > 0, where H =

1

α
.

Of importance is the concept called subordination. Roughly speaking, a subordination

is a change of the time parameter for a stochastic process.

Definition Let X = (Xt, t ≥ 0) be a stochastic process, and consider a striclty increas-

ing stochastic process Y = (Yt, t ≥ 0). The process S defined as

S = {XYt
, t ≥ 0}

is called a subordination of X to the subordinator Y.

If X and Y are Lévy processes, then S is also a Lévy process (see Sato (1999), p.197).

3.6.2 First passage time of Lévy processes

Let X = (Xt, t ≥ 0) be a Lévy process with characteristics triplet (A, ν, γ). Consider the

following two properties:

1) P (Xt ≤ Xt− for every t > 0) = 1;

2) P (lim supt→∞Xt = ∞) = 1.

Condition 1) is equivalent to having ν((0,∞)) = 0. This means that the process does

not have positive jumps (see Sato (1999), p.345).

With these conditions it is possible to determine a process called the first passage time

process, denoted by R = {Rx, x ≥ 0} , defined by

Rx(ω) = inf {t > 0 : Xt(ω) > x} , ω ∈ Ω, x ≥ 0.

For each x ≥ 0, Rx is a stopping time (See Bertoin (1996), p.22).
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Theorem (First Passage) The process R = (Rt, t ≥ 0) is a Lévy process whose sample

paths are a.s. strictly increasing. We also have the following formula:

E[e−uRx ] = e−xψ
−1(u),

where ψ(w) = 1
2
Aw2 + γw +

∫
(−∞,0)

(ewx − 1 − wx1[−1,0)(x))ν(dx), and ψ−1 is its inverse

function (see Sato (1999), p.346).

If X is a Brownian motion drift γ and variance σ2, then ν = 0, therefore Ψ(w) =

1
2
σ2w2 + γw and the inverse is Ψ−1(u) = 1

σ2

(√
γ2 + 2σ2u− γ

)
, see Sato (1999), Example

46.6, p.350. This corresponds to an inverse Gaussian distribution (IG), which is a particular

case of the Generalized Inverse Gaussian distribution (GIG). see Shoutens (2003), p.53.

With the above parameters of the Brownian motion we have that the first passage process

R is a Lévy process driven by the GIG
(−1

2
, x
σ
, γ
σ

)
distribution, i.e. Rx ∼ GIG

(−1
2
, x
σ
, γ
σ

)

for x ≥ 0.

3.6.3 Sums of random variables

Recall that self-similar processes and stable distributions arise naturally as the limit of

sequences of random elements. Consider a sequence of i.i.d. r.v.s X1, X2, ... in R. Define the

following sequence of processes in the space D :




Z
(n)
t =

1

bn




btnc∑

i=1

Xi − an



 , t ≥ 0




 , n = 1, 2, ...,

for some sequences of real numbers {an, n ≥ 0} and {bn, n ≥ 0} . Similarly we can define

the object 


S
(s)
t =

1

b(s)




btsc∑

i=1

Xi − a(s)



 , t ≥ 0




 , s ≥ 0.

for real functions a(s) and b(s), s ≥ 0, assuming b(s) positive. The following result by Lam-

perti shows that there is a strong implication in the convergence of S(s), as s→ ∞.
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Theorem If S(s) f.d.d.→ S as s→ ∞, then S is self-similar with some index H. Moreover, the

normalizing function b(s) is a regularly varying function with index H (see Whitt (2002),

p.98)

Recall that a Borel measurable function b(s) : R+ → R+ is said regularly varying function

with index ρ ∈ R, and we write b ∈ RV (ρ), if

lim
s→∞

b(as)

b(s)
= aρ, a > 0.

If ρ = 0, the function b is called slowly varying (see Bingham et al (1998), or Meerschaert

and Scheffler (2001), p95). For example, the function c(s) = csρ, s ≥ 0, is in RV (ρ), for any

ρ ∈ R.

Stable r.v.s also appear in a natural way. We say that a r.v. X belongs to the domain of

attraction of one stable distributions Sα(σ, β, µ) if for the r.v.s X1, X2, ..., independent copies

of X, there exit sequences of real numbers {an, n ≥ 0} and positive numbers {bn, n ≥ 0}
such that ∑n

i=1Xi − an
bn

d→ X as n→ ∞.

Here X ∼ Sα(σ, β, µ). Under wide conditions on X we have this kind of stability. Let

F (x) = P (X ≤ x) be the d.f. of X and Gc(x) the tails of X, i.e.

Gc(x) = P (|X| > x) = 1 − F (x) + F (−x).

Then, the following general central limit theorem holds.

Definition (see Whitt (2002), p.114) The r.v. X belongs to the domain of attraction

of a stable law Sα(σ, β, µ), with α ∈ (0, 2) (i.e. α 6= 2), if and only if the tail Gc(x) is a

regularly varying function with index equal to −α and

1 − F (x)

Gc(x)
→ 1 + β

2
as x→ ∞.

The next result is the well-known Lindeberg´s theorem.
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Theorem (Lindeberg´ Theorem) Let X
(n)
i i = 1, 2, ..., k(n) be independent r.v.s and an

interger-valued function k such that k(n) → ∞ as n → ∞. Consider the following sum of

random variables:

S(n) =

k(n)∑

i=1

X
(n)
i , n = 1, 2, ...

and suppose that the following conditions are satisfied:

1) E(X
(n)
i ) = 0 for all i = 1, ..., n and n = 1, 2, ...

2)
∑k(n)

i=1 E

((
X

(n)
i

)2
)

= 1, for each n;

3) (Lindeberg´s condition)

lim
n→∞

k(n)∑

i=1

En,i,ε = 0 for all ε > 0,

where En,i,ε :=
∫
|x|>ε x

2µn,i(dx) and µn,i = L(X
(n)
i ).

Then S(n) d→ Z as n→ ∞, where Z ∼ N(0, 1).

A similar statement is the Lyapunov Central limit theorem, in which the key Lyapunov´s

condition is expressed in terms of the moment of order 3 (see Pollard (1984), p.51)

3.6.4 Random sums of random variables

Theorem (Transfer Theorem) Consider the random sum

S(n) =
N(n)∑

i=1

X
(n)
i , n = 1, 2, ...

where
{
X

(n)
i , i, n ∈ N

}
is a double array of r.v.s, and

{
N (n), n = 1, 2, ...

}
is a sequence

of integer-valued r.v.s, all of them independent of each other. Suppose that there exits an

increasing sequence {kn, n = 1, 2, ...} of natural numbers such that

kn∑

i=1

X
(n)
i

d→ X and
N (kn)

kn

d→ Y, as n→ ∞.

Then S(n) d→ Z, as n→ ∞, where Z is a r.v. with ch.f.

E(eiθZ) =

∫ (
E(eiθX)

)u
µY (du).
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(see Gnedenko and Korolev (1996), p. 98)

3.6.5 The Skorohod J1 topology and convergence

For studying convergence in distribution (weak convergence) of a sequence of stochastic

process in functional spaces C or D, we need to provide these spaces with a topology so to

be able to talk about continuous functions.

Given two functions in C, say f(t) and g(t), t ∈ [0,∞), the following function defines a

metric in C (therefore a topology)(it is called uniform, or Kolmogorov metric):

ρC(f, g) := sup
t∈[0,∞)

|f(t) − g(t)| .

If f(t) and g(t), t ∈ [0,∞) are functions in D, the following defines a metric in D :

ρD(f, g) := inf

{
ε > 0 : ∃λ ∈ Λ : sup

t∈[0,∞)

|f(t) − g(λ(t))| + sup
t∈[0,∞)

|t− λ(t)| ≤ ε

}

where Λ is the set of all strictly increasing functions λ(t), t ∈ [0,∞), which are continuous,

onto and with λ(0) = 0.

This metric, devised by Skorohod, defines a topology, it is called Skorohod topology and

usually denoted by J1.

The topology J1 in D coincides with the topology in C generated by the above metric.

With the topology J1 we have the following results.

Theorem (Convergence in D⇒) Let {Xn, n ≥ 1} be a sequence of stochastic processes in

the space D⇒ (see Symbols Index). If X(n) f.d.d.→ X, as n→ ∞, for a stochastically continuous

process X, then X(n) d→ X as n→ ∞ in the J1 topology (Bingham (1971)).

Theorem (Continuous Composition-Maps) Consider the product space D ×D→, en-

dowed with the product topology of J1. Let {(xn, yn), n ≥ 1} be a sequence of functions

in D × D→ such that (xn, yn) → (x, y) as n → ∞ in the J1 topology. It is true that if

(x, y) ∈ C × D→ or (x, y) ∈ D × C⇒ then, xn ◦ yn → x ◦ y as n → ∞ in the J1 topology.
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This means that the composition function is a continuous mapping under these restrictions

(Whitt (2002), Theorem 13.2.2, p.430).

3.6.6 Some distributions

We present some distributions of random variables that we use (see Eberlein and Hammer-

stein (2004) or Shoutens (2003)). These distributions are infinitely divisible and therefore

they can generate Lévy processes.

Let Kν(x) be the so called Bessel function of the third kind:

Kν(z) =
1

2

∫ ∞

0

uυ−1e−
1
2
z(u+ 1

u
)du, z > 0 and ν ∈ R.

The Generalized Inverse Gaussian (GIG) density function fGIG(x) for a positive r.v. X,

denoted by GIG (λ, χ, ψ) , is defined by

fGIG(x) =
(ψ/χ)λ

2Kλ(ψχ)
xλ−1 exp

[
−1

2
(ψ2x+ χ2/x)

]
, x > 0.

And we have the following restrictions for the parameters: if λ > 0, then χ ≥ 0 and ψ > 0;

if λ = 0, then χ > 0 and ψ > 0; if λ < 0, then χ > 0 and ψ ≥ 0. When λ = −1
2
, it is the

Inverse Gaussian distributions (IG), which corresponds to the distribution of the first time

when a Brownian motion with positive drift surpasses a specific level (see Shoutens (2003)).

The density of the IG r.v. (denoted IG(χ, ψ)) is

fIG(x) =
χ√
2π
eψχx3/2 exp

[
−1

2

(
χ2

x
+ ψ2x

)]
, x > 0.

Notice that if X ∼ IG(χ, ψ), then aX ∼ IG(
√
αχ, ψ√

α
).

A real-valued r.v. X has Generalized Hyperbolic Distribution(GH) if its density is given

by

fGH(x;λ, α, β, δ, µ)

= a(λ, α, β, δ, µ)
[
δ2 + (x− µ)2

](λ− 1
2
)/2
Kλ− 1

2

(
α

√
δ2 + (x− µ)2

)
eβ(x−µ), x ∈ R.

Here

a(λ, α, β, δ, µ) =
(α2 − β2)

λ
2

√
2παλ−

1
2 δλKυ(δ

√
α2 − β2)

,
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with α > 0 (the shape), 0 ≤ |β| < α (the skewness), µ ∈ R (location), δ > 0 (scaling) and

λ ∈ R. It is denoted by GH (λ, α, β, δ, µ) .

The GH distribution can be generated as a mixture of Normal and GIG in the following

way. Let X and Y be r.v.s such that X | Y ∼ N(µ+βY, Y ) and Y ∼ GIG
(
λ, δ,

√
α2 − β2

)
.

Then X ∼ GH (λ, α, β, δ, µ) , (see Eberlein and Hammerstein (2004) or Bingham and Kiesel

(2004), p. 69.). It is also known that the Normal distribution N(µ, σ2) is the limit of the

Generalized Hyperbolic distribution as δ → ∞ and δ
α
→ σ2 (see Cont and Tankov (2004),

p.126).

The Lévy distribution is a stable law S1/2(σ, 1, µ) and the form of the density is

fL(x) =
( σ

2π

)1/2 1

(x− µ)3/2
exp

[
1

2

−σ
x− µ

]
, x > 0.

This corresponds to the distribution of the first time when a Brownian motion with no drift

hits a specific barrier (see Woyczynski (2001), p.243)
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4 Pricing Theory

One of the fundamental problems in the financial industry is to suggest a monetary value

(price) of a family of contracts called contingent claims written on other securities, usually

risky assets. This problem is called option pricing. There is a general theory of stochastic

financial modelling, answering questions related to pricing contingent claims, or determining

the “fair” price of a contract (see Bingham and Kiesel (2004), Hull (1997) for an extended

description).

A European call option is a common example of a contingent claim. The “fair” value,

or fair price, of such an option is the price paid by the buyer of the contract with his/her

specific rights in the future.

In a financial market we deal with financial securities (shares, futures, options, etc),

which explicitly describe the rights and obligations of the traders. The whole concept of

pricing relies on the idea of “avoiding arbitrage”, equivalently to “replicating the contract”.

We precise this later in detail. If there is a portfolio of financial securities that mimics the

profit or loss of the contract, then both of them should have the same value because that

avoids arbitrage (making money from nothing). Hence the price of the contract is the value

of the portfolio at the moment of buying the contract. We can summarize this concept in

the following principle,

• Two apparently different financial instruments with the same payoff (profit or loss) at

maturity for all possible market scenarios have the same value at the beginning.

A first attempt to formalize this is to use models over discrete time.

4.1 Discrete models

Suppose that, in a financial market, there are n assets (stock securities). Let Si(t) denote

the stock price of security i = 1, ..., n at time t, t = 0, 1, ..., T (possibly infinite time). There

is also a free-risk security asset (bank account, or bond) whose price at time t is B(t),

t = 0, 1, ..., T. For each i and t, Si(t) is a random variable, so the vector

S(t) = (S1(t), ..., Sn(t)) , t = 0, 1, ..., T
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defines a multidimensional discrete-time stochastic process S on some underlying probability

space (Ω,F , P ).

Investors (traders) invest money in financial securities making portfolios, which are strate-

gies to invest in the market. Formally a portfolio is a stochastic process θ on the probability

space (Ω,F , P ) defined by the vector θ(t) = (θ0(t), θ1(t), ..., θn(t)) , t = 0, 1, ..., T , where

θi(t), for i = 1, ..., n, is the number of units invested in security i and θ0(t) is the ammount

of money invested in the risk-free security B(t) at time t.

It is assumed that the market has a nested structure which represents the flow of infor-

mation revealed to the investors, so we need to consider the so-called filtration, denoted by

F = {F0 ⊂ F1 ⊂ ... ⊂ FT ⊂ F}. Here Ft represents the “information” at time t, which is

available to all traders.

Definition We say that a stochastic process X(t), t = 0, 1, ..., T is adapted to the fil-

tration F if for any t, X(t) is measurable with respect to Ft. We say that X is F-predictable

if X(t) is measurable with respect to Ft−1 for t = 1, ..., T.

The market is provided with a filtration F and the stock price process S and the risk-free

asset B are adapted to F. Moreover, the portfolio θ is F-predictable. Given a portfolio θ we

define the value process V (t) at time t, t = 0, 1, ..., T as follows:

V (t) = θ0(t)B(t) +

n∑

i=1

θi(t)Si(t) , t = 0, 1, ..., T.

This function V (t) is the monetary value of the investment at time t when performing, or

following the strategy θ.

Now we have the concept of self-financing portfolio and the important concept of no-

arbitrage (see Pliska (1997) or Kijima (2003)).

Definition (Self-financing portfolio) A portfolio θ is said to be self-financing trading

strategy if

V (t) = θ0(t+ 1)B(t) +

n∑

i=1

θi(t+ 1)Si(t) , t = 0, 1, ..., T − 1.
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This means that the values of the process just before and after any transaction are equal

at any time, i.e. no money is added to or withdrawn from the strategy during the time, but

just reallocated.

Definition (Arbitrage Opportunity) An arbitrage opportunity in the market (S, B)

is the existence of some self-financing strategy θ such that at time t, V (0) = 0,, while at

maturity T , V (T ) ≥ 0 and E(V (T )) > 0.

This means that without risking money there is a possibility to gain money (the conditions

imply that P (V (T ) > 0) > 0). Another term is “free lunch”.

Remark (Efficient market) It is well agreed that theoretically a market does not

accept arbitrage opportunities. If a market accepts arbitrage, then the players and investors

would move their strategies to make some profit from such opportunities. Even if this

happens in a market, this does not last long, and eventually the market moves to “stable”

conditions with no-arbitrage. Then we say that markets are efficient, so no free lunch.

As mentioned previously, one of our goals is to be able to price contingent claims, written

on the securities (S,B).

Definition A European contingent claim is a r.v. X on (Ω,F , P ), representing a payoff

at maturity T. The price at time t ≤ T should be such that the extended market avoids

arbitrage. Essentially, this means that given a price process {p(t), t = 0, 1, ..., T} for the

European contingent claim X, the payoff at maturity T is p(T ) = X. Then the extended

market (S, B, p), which is the original market with added the new security, the price process

p(t), does not allow arbitrage opportunities. Such a price process p is called admissible

price (see Definition 1.21 or Definition 5.29 in Föllmer (2002)).

For convinience, we use just “contingent claim” instead of European contingent claim,

with the understanding that there are other types of claims in the market.

It might be the case that there are many price processes p(t), t = 0, 1, ..., T , satisfying the
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above conditions. The important question is when does there exit a unique price process?

Or, how to choose one of these prices processes, if there are many? The following concepts

help to clarify such situation.

Defintion(Martingale measure) A probability measure Q is called a Martingale mea-

sure on the measurable space (Ω,F) if two conditions are satisfied:

i) Q is equivalent to P , the original probability measure of the market, and

ii) EQ

(
Si(t)
B(t)

| Fs

)
= Si(s)

B(s)
for all s, t with s ≤ t for i = 1, ..., n.

This means that the processes Si

B
=
(
Si(t)
B(t)

, t ≥ 0
)
, i = 1, ..., n, called discounted pro-

cesses are martingales under Q. We denote by P the set of all martingale measures in a

particular market.

Theorem (Fundamental theorem of asset pricing) The market is free of arbitrage

if and only if P is not empty (Föllmer (2002), Theorem 5.17, p. 217).

The next theorem shows the relation between martingale measures and the discounted

stock price processes (Föllmer (2002) Theorem 5.30 jointly with Definition 5.29, p. 225).

Theorem (Risk-Neutral valuation formula) Let X be a contingent claim, and p an

admissible price process for X. Then there is no arbitrage in the extended market if and

only if there exits a martingale measure Q ∈ P such that

p(t) = EQ

(
X

B(t)
| Ft

)
, t = 0, 1, ..., T.

So far we have a characterization of admissible prices for contingent claims using mar-

tingale measures, and we know that if the market is free of arbitrage, then there exits at

least one martingale measure. We want to know under which conditions there exists just

one admissible price process.
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Definition (Replicating portfolio) A contingent claim X is said to be attainable if

there exists a self-financing trading strategy θ of the original securities, called replicating

portfolio, such that at maturity T , V (T ) = X. In this case the portfolio process θ is said

to generate, or replicate, the contingent claim X.

It means that we get the same payoff at time T investing in X or investing in the original

securities using the replicating portfolio θ. It is also known that there exits a unique repli-

cating portfolio for a contingent claim (Proposition 3.1.1 in Musiela and Rutkowski(1997),

page 73). The process V is a candidate for the prices process p because it is unique and

it gives the same payoff at time T. Indeed, the process V avoids arbitrage, i.e. V is an

admissible prices process. The following result clarifies the relation of replicating portfolios

and martingale measures.

Theorem If the contingent claim X is attainable, then the price process

p(t) = EQ

(
X

B(T )
| Ft

)
, t = 0, 1, ..., T

is the same for every martingale measure Q in P, and V (t) = p(t) for t = 0, 1, ..., T (Föllmer

(2002) Theorem 5.33, p. 228).

Therefore, if the contingent claim is attainable, there is no ambiguity for the price process

using a martingale measure, all of them yield the same price process, which corresponds to

the value of the replicating portfolio.

To conclude this section we state the important theorem of complete markets (Föllmer

(2002) Theorem 5.39, p. 232). The binomial model to price options is an example of this

result.

Theorem In an arbitrage-free market there exits just one martingale measure if and only if

all contingent claims are attainable. In such a case the market is called complete.
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4.2 Continuous time models

In the previous section we have considered a discrete-time model. A more realistic or con-

venient assumption is to deal with continuous-time models. The approach to price a claim

in continuous time is similar that in discrete-time models, again using the concept of self-

financial strategies.

Now we have the stochastic integral involved which is one of the most important tools

for this frame.

An important example of a model in continuous time is a functional of the Brownian

Motion. The assumption that the prices are driven by the Geometric Brownian motion led

to the famous Black-Scholes model for option pricing. A more general class of models in

continuous time is based on Lévy processes.

Here we summarize some notions for financial pricing using models in continuous time.

Suppose that a market consists of risky-assets S and one free-risk security B. We de-

fine B and S to be positive semimartingales on a standard continuous-time filtered space

(Ω,F ,F, P ),

S = {(S1(t), ..., Sn(t)), t ≥ 0} and B = {B(t), t ≥ 0} .

The financial market (B,S) is also called an economy E .

The filtration F = {Ft, t ≤ T} satisfies the “usual conditions”: (a) F is right continuous

(i.e. Ft = ∩u>tFu); (b) F0 contains all the null-sets of F . It is convenient to assume that

F0 is trivial (i.e. if A ∈ F0 either P (A) = 0 or P (A) = 1).

Once again, the procedure for pricing requires to define what is called a portfolio, which

is a rule for investing in the economy E .

A trading strategy is a predictable stochastic process θ = {(θ0(t), θ1(t), ..., θn(t)) , t ≥ 0}
(predictability is slightly more general than the left continuity of the sample paths of the

process, see Meyer (2000), p.132 or Definition 4.23 in Hunt and Kennedy (2000), p.79 or

Protter (1990)). The variable θi(t) is the number of units invested in security i, i = 1, ..., n

and θ0(t) is the money invested in the risk-free security B(t) at time t.

We consider a self-financial portfolio , i.e. a trading strategy without possibility of infu-

sions of new funds or withdrawals of cash during the time of the investment.
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Definition We call Self-Financial Trading Strategy θ for the economy E a stochas-

tic process θ = (θ0(t), θ1(t), ..., θn(t)) satisfying the following conditions:

i) θ is F− predictable;

ii) θ has the self-financial property,

θ(t) · (B(t),S(t)) = θ(0) · (B(0),S(0)) +

∫ t

0

θ(u)d(B(u),S(u)).

We have the notation V (t) = θ(t) · (B(t),S(t)).

Note that the integral
∫ t
0
θ(u)d(B(u),S(u)) is well-defined since the process (B,S) is a

semimartingale and θ is predictable (see Theorem 4.31 in Jacod and Shiryaev (1987), p.46

or Protter (1990)).

Once again, we deal with markets which are free of arbitrage (no “free-lunch”).

Definition (Arbitrage Opportunity) We say that the economy E admits an arbitrage op-

portunity at time T if there exists a self-financial strategy θ such that θ(0) · (B(0),S(0)) = 0,

θ(T ) · (B(T ),S(T )) ≥ 0, and P (θ(T ) · (B(T ),S(T )) > 0) >0 (P -a.s.). If there are not such

strategies, the economy is free of arbitrage.

Definition (Martingale Measure) A martingale measure for the economy E is a measure

Q on Ω, equivalent to P , such that the process

S∗ := S/B = {(S1(t)/B(t), ..., Sn(t)/B(t)), t ≥ 0}

is a martingale under Q. And the space of martingale measures is denoted by P.

We have the following useful result (Mel´nikov et al (2002), p.32 or Bingham and Kiesel

(2004) Theorem 6.1.1, p.234).

Theorem If P is not empty, then the economy E is free of arbitrage.
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A contingent claim with maturity T is a bounded FT−measurable r.v. X. As in the

Definition of European Contingent claim in the previous section, the price of a contingent

claim should avoid arbitrage. Provided that P is not empty, for any Q ∈ P, the process

p(t) = EQ

(
X

B(T )
| Ft

)

is a martingale, with p(T ) = X(T ). Then, with the price process p for the contingent claim

X the extended market is free of arbitrage, and therefore it is an admissible price process.

So, every martingale measure defines a price process for a contingent claim, but not every

admissible price process is defined with a martingale measure.

A contingent claim is attainable if there exists a self-financial strategy that replicates the

payoff at time T (i.e. V (T ) = X). It is known that a replicating strategy, when it exits, is

unique (see Proposition 10.1.1 in Musiela and Rutkowski (1997), p.234). Then V (t) defines

an admissible price process and it is unique. This means that

V (t) = EQ

(
X

B(T )
| Ft

)
for all Q ∈ P.

Now we have the following (see Theorem 3.3 in Mel´nikov et al (2002), p.33).

Theorem Assume P is not empty. Then there exist a unique martingale measure in the

economy E if and only if all contingent claims are attainable.

Such a market, as already mentioned above, is called complete.

So, if the market has just one martingale measure there is a unique fair price for every

claim. The classical example is when S is modelled using a diffusion driven by the Brownian

Motion, for example the Black-Scholes scheme.

Remark One of the most useful results for discrete-time scheme is the Risk-Neutral

valuation formula stated in previous section. It describes a characterization of the space

of admissible price processes using martingale measures. Unfortunately, in the continuous

setting, with the definition of arbitrage opportunity, it is not possible to have a general

Risk-Neutral valuation formula for continuous-time. Nevertheless, using a stronger concept
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of arbitrage opportunity it is true that the existence of martingale measures in the market

is equivalent to the non-existence of arbitrage opportunities. It follows from such a result

that a price process p for a contingent claim X is admissible if and only if

p(t) = EQ

(
X

B(T )
| Ft

)
, t ≥ 0

for some martingale measure Q in P (see Delbaen and Schachermayer (1994)).

We conclude this section with the stronger concept of arbitrage opportunity that leads

to say that an efficient market has a non-empty space of matingale measures (see Delbaen

and Schachermayer (1994), Musiela and Rutkowski (1997) or Bingham and Kiesel (2004)).

Definition (No free luch with vanishing risk) An economy E is called NFLVR (no

free lunch with vanishing risk) if there are no sequences of simple self-financial strategies

{θm, m ≥ 1} and FT− measurable non negative r.v. X such that:

1) V m
T ≥ δm for a sequence of positive numbers δm converging to 0,

2) limm→∞ VT = X and

3) P {X > 0} > 0.

The meaning of this is that we can not use simple strategies to approximate a position in

the market in which there is no risk to loose but there is a chance of making profit.

4.3 Applications of GCTRW in finance modelling

In finance one of the basic models used for prices of securities is the so-called Binomial Model

(or Cox-Ross-Rubinstein for the whole framework). Despite its simplicity (or perhaps due

to it), it is possible to price uniquely any contingent claim under the robustness of risk-

neutral valuation. Equivalently, there is possibility of perfect hedging (replicating payoff).

This property is called uniqueness of the Martingale Measure. Such property also holds for

continuous-time models driven by the Brownian Motion. The Black-Scholes framework for

pricing uses the Geometric Brownian Motion (particular diffusion model) to model stock-

prices. Strikingly, we can see that “in the limit”, pricing within the discrete time framework

of Cox-Ross-Rubinstein is equivalent to pricing in the continuous-time Black-Scholes scheme.
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When the lattice-partition of the time of the discrete model becomes finer, then the limit in

probability turns out to be a model in continuous time.

The Brownian motion has been a useful model for pricing. Under non-arbitrage opportu-

nities, diffusions models define a complete market, so there is only one martingale measure

to use for pricing. Nevertheless it has been pointed out that these models do not fit per-

fectly the financial time series observed in real markets. Thus, other models, based on Lévy

processes, have been suggested and widely analyzed. A popular model for the stock price of

financial securities is a stochastic process of the form

St = S0e
Yt , t ≥ 0,

where S0 are the initial stock price, at time t = 0, and Yt a Rn−valued Lévy process.

Many particular cases of Lévy processes have been studied. One family that seems rich

enough to model financial series is the Generalized Hyperbolic motion. This model has been

strongly suggested in finance by authors like Ole E. Barndorff-Nielsen and Ernst Eberlein

(see Eberlein (2001) or Prause (1999), for instance).

We would like to propose a model that exploits the simplicity and practicality of a

binomial lattice and at the same time hold a good level of aggreement with financial series.

As a matter of fact, we know that the transactions in the financial market occur in a

discrete manner, so we can think of discrete times. Between two consecutive transactions

there is certain amount of random time. This also means that the number of transactions

varies randomly. Those number of transactions reflect how prone traders are for buying or

selling assets.

We suggest that the willingness for buying or selling is driven accordingly by people´s

whimsical perception of the economy. We imagine that people have some perception of the

state of the economy, as soon as that perception “hits a level” that they consider critical,

investors may be more or less prone to sell or buy. This describes an internal mechanism

that triggers the number of transactions.

Furthermore, prices increase and decrease accordingly to specific rules and policies of

financial houses. In general those rules determine how much the price can change when
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dealers interact. Sellers and buyers are not allowed to propose a big changes of value from

previous transaction. Instead, they have to push the prices with “small” bets.

The following model for the stock prices, based on GCTRW discussed in the previous

Chapter (see Definition (GCTRW), reflects the above ideas.

Suppose that an asset/stock price is modelled by the stochastic process

St = S0e
Zt , t ≥ 0,

where S0 is the price at time 0 and St the price at time t. The process Z = {Zt, t ≥ 0} is

a GCTRW. Recall the example of the section “Particular cases for stable conditions” in the

previous Chapter. The process Z is defined as

Zt =

Nt−1∑

i=1

Xi with Nt = min

{
k :

k∑

i=1

τi > t

}
, (13)

where

Xi =





ε0 with probability p0

−ε0 with probability 1 − p0

and τi =





ε1 with probability p1

−ε1 with probability 1 − p1

with p0 ∈ (0, 1), p1 ∈ (1
2
, 1) and ε0, ε1 positive numbers. The r.v. Xi represents the change

of the price in transaction i, and the integer-valued r.v. Nt is the number of transaction up

to time t. The number of transactions is determined by the random walk
∑k

i=1 τi. When this

random walk crosses a specified level, then Nt is triggered.

Remark From the previous Chapter we know about the statistical regularity of this

process. With the condition that p1 >
1
2
, Proposition 8 tells us that the process Z behaves

like a particular case of Generalized Hyperbolic process when it is observed at high frequency.

The model we obtain is a Normal Inverse Gaussian process, which corresponds to the GH

distribution with parameter λ = −1
2
. On the other hand, we know that the general form of

GH distribution has been widely reported as a good model for financial series. In Prause

(1999), these models are used for financial series. It is interesting to mention that, in this

document, estimations of the GH distribution leads to values of λ close to −1
2

for the Deutsche

Bank returns. Using the so-called Minimal Kolmogorov Distance, this author obtains an
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estimation of −0.5002 for λ, which corresponds to the NIG distribution. Furthermore, it

is known that the normal distribution comes from the Generalized Hyperbolic distribution

(see Appendix “Some distributions”). This suggests that the Brownian Motion behaviour

observed in financial series can be a result of extreme behavior in the Generalized Hyperbolic

motion, therefore in the GCTRW. We suggest that the movement of prices in financial

markets are driven by a hidden process, which associated with the state of the economy.

Such a process releases as an outcome the desire of people to buy or sell assets, i.e. the

number of transactions in the market is triggered by a process larking from behind. With

our particular setting we actually suggest that such a hidden process is close to a Brownian

motion.

This model, based on a GCTRW, deals with a continuous-time subordination of the

Brownian motion. Subordinations of diffusions have been considered in the literature (see,

for instance, Prigent (2003), Proposition 3.3.13, p.337).

The discrete path-structure resembles a binomial lattice. We want to exploit this facts

for pricing contingent claims.

We will show how model (13) is equivalent to model (12) of Section 3.4.2. Now, using

model (12), we show the simulation of 3 paths (Figure 3) with ∆0 = 0.2, γ0 = 1, ∆1 = 0.3,

γ1 = 0.1 and n = 10, 000 (in Matlab).

Also we show the simulation of one path with the same parameters as before but now

with n = 100, 000, Figure 4, then the increments of every 100 observations, Figure 5, and

the histogram of these increments, Figure 6. We can observe the high pick in the histogram

corresponging to the presence of “jumps”, which can be seen in the graph of the increments.

In order to price a contingent claim we have to define the market, or the economy. In this

case it consists of the risk-free security Bt = ert (which is the price of a bond with interest

rate r, assuming B0 = 1) and the asset St.

Recall that a martingale measure Q is such that St

Bt
, t ≥ 0 is a martingale, i.e.

EQ

(
St
Bt

| Fs

)
=
Ss
Bs

, a.s. for s ≤ t.
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Figure 3: Simulation of 3 paths
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Figure 4: Simulation with n = 100, 000
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Figure 6: Histogram

With this equation and using the properties of St we obtain

EQ

(
St
Bt

| Fs

)
= EQ

(
S0e

∑Ns
i=1Xie

∑Nt−Ns
i=1 Xi

er(t−s)ers
| Fs

)
=
Ss
Bs
EQ

(
e
∑Nt−Ns

i=1 Xi

er(t−s)
| Fs

)
.

Then, for Q to be a martingales measures, the last expression must equal Ss

Bs
. So, a necessary

condition for the martingale property of Q is that

EQ

(
e
∑Nt−Ns

i=1 Xi | Fs

)
= er(t−s). (14)

The r.v.s Xi and τi can be expressed as symmetric Bernoulli r.v.s, i.e.

P (Xi = ±2ε0
√
p0q0 + ε0(2p0 − 1)) =

1

2
, and

P (τi = ±2ε1
√
p1q1 + ε1(2p1 − 1)) =

1

2
.

According to Proposition 8 in the previous chapter, under high frequency, the process
∑Nt−Ns

i=1 Xi approximates a Normal Inverse Gaussian Lévy motion with specific parameters

that can be derived from the two expressions. With the notation in Proposition 8 we set

∆j = 2εj
√
pjqj and γj = εj(2pj − 1)), j = 0, 1.
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Using these parameters, the limit the left-hand-side of (14) turns out to be the expectation

of the exponential of a Normal Inverse Gaussian-r.v., which can be obtained by means of

the ch.f. We end up with the following expression:

e

(
γ1
∆1

−
√(

γ1
∆1

)2
−2(γ0+ 1

2
∆2

0)
)

t−s
∆1

= er(t−s).

We plug back the original parameters to obtain the following relation in terms of the

probabilities p0 and p1 to specify a martingale measure:

−1

2ε1
√
p1(1−p1)




√

−2 (ε0(2p0 − 1) + 2ε2
0p0(1 − p0)) +

(
2p1−1

2
√
p1(1−p1)

)2

− 2p1−1

2
√
p1(1−p1)



 = r.

Hence, if we choose a pair (p0, p1) that satisfy the above relation, we can price a contigent

claim using the GCTRW, with the understanding that these probabilities do not correspond

to a martingale measure of the GCTRW, but they appear in the limit, i.e. under high fre-

quency. However, the discrete path-structure of the GCTRW can be used to price contigent

claims in a correct manner when taking limits.

If the terminal payoff of a contingent claim with maturity T is fT ({St, 0 ≤ t ≤ T}) (this

includes path-dependent contracts), we can calculate the price of the contigent claim by

using the martingale measure (p0, p1) in the following way:

Fair Price = lim
n→∞

EQ(fT ({S(n)
t , 0 ≤ t ≤ T}))
BT

.

Here S
(n)
t is defined with the symmetric-Bernoulli representation of the r.v.s Xi and τi, in

order to apply the results in the previous chapter.

We have to mention that the concept of embedding a random number of shocks for pricing

is suggested in different works, see for example Rachev and Rüschendorf (1994), Weron

(2002), Benhamou (2002), Prigent (2003). Although the way it is suggested is considerably

different.
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5 Statistical Inference

In this Chapter we want to deal with some aspects of statistical inference. In many cases

we model phenomena with stochastic processes of a specific structure, e.g. diffusions, Lévy

processes, GCTRW; depending on some unknown parameters. Using such models, and

having data available, we try to identify or estimate, the unknow parameters.

We want to find the unknown parameters θ of a continuous-time stochastic process Xt,

t ∈ [0, T ] . The solution of the problem depends on the available data.

The data (measurements) can be taken at equally spaced times k
n
T, k = 1, 2, ..., n, at

arbitrary (non-random) times 0 < t1 < t2 < ... < tn < T , or, at n random times.

5.1 Random sampling data

Suppose we want to estimate the diffusion coefficient σ2 of the Brownian motion Xt =

σWt, t ≥ 0, where Wt is a standard Brownian motion.

The following is well-known. Let W = (Wt, t ∈ [0, T ]) be a standard Brownian mo-

tion. If
{
tn(1), ..., t

n
(n)

}
, n ≥ 1 are ascendingly ordered fixed times in [0, T ], such that

max
2≤k≤n

∣∣∣tn(k) − tn(k−1)

∣∣∣→ 0 as n→ ∞, then

n∑

k=2

(
Wtn

(k)
−Wtn

(k−1)

)2

→ T a.s.

The sum
∑n

k=2

(
Wtn

(k)
−Wtn

(k−1)

)2

is called quadratic variation of the Brownian Motion (see

Oksendal (2003)).

Suppose that we have n observations of prices for the same asset. The observations come

at random times τ1, ..., τn in the interval [0, T ], according to a Uniform (0, T ). If τ(1), ..., τ(n)

are the order statistics, then
{
Sτ(1) , ..., Sτ(n)

}
represents the data in chronological order. We

assume that the asset prices follow the following Geometric Brownian motion

dSt = µStdt+ σStdWt, t ≥ 0, and S0 > 0,

where Wt is the standard Brownian motion.
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We know that the solution of this stochastic differential equation is

St = S0 exp

[(
µ− σ2

2

)
t+ σWt

]
(15)

(see Mao (1997, p.300)).

We construct an estimator for the volatility σ2.

Proposition 10 As n→ ∞,

σ̂2
n =

1

T

n∑

k=2

(
log

(
Sτn

(k)

Sτn
(k−1)

))2

→ σ2 a.s.

Proof. Without loss of generality assume that T = 1. By equation (15) we have

σ̂2
n =

n∑

k=2

((
µ− σ2

2

)(
τn(k) − τn(k−1)

))2

+
n∑

k=2

(
σWτn

(k)
− σWτn

(k−1)

)2

. (16)

Gupta and Nadarajah (2004) have found that τn(k+1) − τn(k) has distribution Beta with

parameters 1 and n for all 1 ≤ k ≤ n. This means that τn(k+1) − τn(k)
d→ 0 (because mean

and variance tend to zero). Since it converges to a constant, the convergence is also in

probability (see Grimmet and Stirzaker (2001), p.310). It implies that there exists a a.s.-

convergent subsequence (see Grimmet and Stirzaker (2001), p.314). The r.v. τn(k+1) − τn(k)

can not increase for bigger n but decrease more, so the convergence is also a.s. for the whole

sequence. This means that

n∑

k=2

(
σWτn

(k)
− σWτn

(k−1)

)2

→ σ2 a.s. as n→ ∞.

An easy calculation shows that

E

(
n∑

k=2

((
µ− σ2

2

)(
τn(k) − τn(k−1)

))2
)

→ 0, as n→ ∞.

This means that the first sum in equation (16) converges to 0 in mean, this implies conver-

gence in probability and, again, by the nature of the order statistics, it is also convegence

a.s. So, we can conclude that σ̂2
n → σ2, a.s. as n→ ∞.

Related to this we have the following proposition about order statistics.
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Proposition 11 For each n = 1, 2, ..., suppose we have random times {τn1 , ..., τnn }n≥1 which

are i.i.d. r.v. with common density function f(x) and distribution function F (x) which is

strictly monotone on (0,∞).

Let
{
τn(1), ..., τ

n
(n)

}

n≥1
be the order statistics of the sample of size n, then

∣∣τn(k+1) − τn(k)
∣∣→ 0 a.s. for all 1 ≤ k ≤ n, when n→ ∞.

Proof. By the same arguments of the last proof it is enough to prove convergence in

distribution.

Mood (1982) has the following result: For k ≤ n such that τn(k) ≤ F−1(p) ≤ τn(k+1), we

have that the asymptotic distribution of τn(k) and τn(k+1) is Normal with mean F−1(p) and

variance p(1−p)
f(F−1(p))2

1
n
. Then as n→ ∞ the variance goes to 0 and, τn(k) and τn(k+1) converge to

F−1(p). Hence
∣∣∣τn(k) − τn(k+1)

∣∣∣ d→ δ0.

5.2 Inference for GCTRW

In Chapter 3 we have defined the Generalized Continuous Time Random Walks, and in

Chapter 4 we use them to propose a financial model and its application in pricing theory.

In this section we want discuss on estimation of the parameters for these models.

The following is an heuristic idea of how to estimate parameters of the GCTRW.

Suppose we have n observation {Zt0 , Zt1 , ..., Ztn} at times t0 < t1 < ... < tn of the

GCTRW-model defined in Chapter 4, in Section“Application of the GCTRW in Financial

Modelling”. We want to find estimators for the parameters ε0, p0, ε1 and p1.

We recall the definition of the model. The process Z is given by

Zt =

Nt−1∑

i=1

Xi with Nt = min

{
k :

k∑

i=1

τi > t

}
, t ≥ 0,

where

Xi =





ε0 with probability p0

−ε0 with probability 1 − p0

and

τi =





ε1 with probability p1

−ε1 with probability 1 − p1.
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Here p0 ∈ [0, 1], p1 ∈ (1
2
, 1] and ε0, ε1 are positive numbers.

For convenience we assume that the times t0, t1, ..., tn are equally spaced in time, and

ti − ti−1 = ρ for i = 1, ..., n.

If we have high frequency of the data, then Proposition 8 tells us that the increments

I(Zti) = Zti − Zti−1
, i = 1, 2, ..., n,

approximate samples from a NIG r.v., call it Sρ.

The last part of the proof of Proposition 8 tells us that Sρ can be seen as the mixture of

a Normal r.v. X and a GIG r.v. Y in the following form:

Sρ | Y ∼ N(γ0Y,∆
2
0Y ), and Y ∼ GIG

(
−1

2
,
ρ

∆1
,
γ1

∆1

)
,

where ∆j = 2εj
√
pjqj and γj = εj(2pj − 1)), j = 0, 1.

Recall that (see Appendix “Some distributions”)

γ0Y ∼ IG

(√
γ0ρ

∆1

,
γ1√
γ0∆1

)
and ∆2

0Y ∼ IG

(
∆0ρ

∆1

,
γ1

∆0∆1

)
.

We split the data into m sets, assuming for simplicity that each set has the same number

of observations, say k = n
m

.

Then, if k is considerable large, classical estimators µ̂ and σ̂2 for a Normal r.v. can be

used to sample from the non-observable r.v.s γ0Y and ∆2
0Y . That is, given the m sets of data

with k observations in each one, we build the estimators µ̂ and σ̂2 for each set. We denote

them by µ̂i and σ̂2
i , i = 1, ..., m. These quantities represent the m “synthetic”-samples from

γ0Y and ∆2
0Y , respectively.

Datta (2005) is one of the authors who has discussed the likelihood estimators of the pa-

rameters of a IG distribution. Given samples {si, i = 1, ..., n} from IG(χ, ψ), the likelihood

estimators for χ and ψ are

χ̂ =

√√√√
n∑

i=1

1

si
+

n∑n
i=1 si

and ψ̂ =
n∑n
i=1 si

√√√√
n∑

i=1

1

si
+

n∑n
i=1 si

, respectively.

Then, we can use these estimators and the synthetic-samples µ̂i and σ̂2
i , i = 1, ..., m, to

obtain estimators of the unknown parameters. That is, we compute the estimations
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χ̂0 := χ̂ ({µ̂i, i = 1, ..., m}),
ψ̂0 := ψ̂ ({µ̂i, i = 1, ..., m}),
χ̂1 := χ̂ ({σ̂2

i , i = 1, ..., m}) and

ψ̂1 := ψ̂ ({σ̂2
i , i = 1, ..., m}).

These are estimations of the quantities

√
γ0ρ

∆1
,

γ1√
γ0∆1

,
∆0ρ

∆1
and

γ1

∆0∆1
, respectively.

The value ρ is known.

We can sustitute the variables ∆0, γ0, ∆1 and γ1 to have expressions in term of ε0, p0, ε1

and p1. Thus we arrive at the following system of four equations with four unknown variables:

χ̂0 =
ρ
√
ε0(2p0 − 1)

2ε1

√
p0(1 − p0)

, ψ̂0 =
(2p1 − 1)√

ε0(2p0 − 1)
√
p1(1 − p1)

χ̂1 =
ρ2ε0

√
p0(1 − p0)

2ε1

√
p0(1 − p0)

, ψ̂1 =
(2p1 − 1)

4ε0

√
p0(1 − p0)

√
p1(1 − p1)

.

The solution of this system gives estimatiors for the parameters ε0, p0, ε1 and p1 of the

GCTRW.
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6 Numerical Methods for Integral Equations

Motivation. In this section we developed a numerical procedure based on probabilistic

tools to solve integral equations. Again, we can see how stability (different from that in

previous Chapters) arises from a random system that receives random quantities to evolve.

The motivation for treating this topic came from the Chapter 2 when we were trying to

determine the ergodic distribution of a Markov chain. It turned out, the density of the

ergodic distribution is the solution of a specific integral equation, which is also the case

of other Markov chains. Unfortunately, the methods developed in this Chapter cannot be

applied to the integral equation of Chapter 2.

An integral equation is an equation that involves integrals of an unknown function. It is

of interest to find the solution, i.e. the function that satisfies the integral equation. We cite

examples of integral equations.

In each of the cases below, find f : R → R satisfying the equation:

1) 0 = −x+
∫ x
0
ex−yf(y)dy;

2) f(x) = e−x − 1
2

+ 1
2
e−x−1 + 1

2

∫ 1

0
(x+ 1)e−xyf(y)dy;

3) f(x) = x+
∫ x
0
(y − x)f(y)dy.

If the limits of the integral are fixed, as in 2), the equation is called Fredholm integral

equation. If the limits are variables, as in 1) and 3), it is called Volterra integral equation.

If the unknown function f(x) is only under the integral sign, as in 1), the equation is said

to be of the first kind, otherwise the equation is said to be of the second kind, as in 2) and

3). These are common examples of integral equations.

There is vast literature about integral equations, and several methods to find an analytic

solution or numerical approximation to the solution. Here we want to propose a numerical

method to find an approximation to the unknown function.

The first restriction we impose is the following, we will work with integral equations

where the integrand is the unknown function f(x) multiplying a known function K(x, y), as

in 1), 2) and 3). The known function K(x, y) is called the kernel.

When the kernel is multiplying the unknown function it is said that the integral equation
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defines a linear operator.

Like in 1), 2) and 3), we deal with equations of the form

0 = ϕ(x) +

∫
K(x, y)f(y)dy

or

f(x) = ϕ(x) +

∫
K(x, y)f(y)dy

where K(x, y) is known and f(y) is the unknown function. The other case is when the

unknown function is inside the kernel, as in

f(x) = x+

∫ x

0

sin(x− f(y))dy.

We are not working with equations of this form.

The second restriction is that we consider ϕ 6= 0. We will see why this condition is

necessary. This is why we cannot use the method for the case of the Markov chain of Chapter

2.

So the integral equation we are trying to solve has following the general form

αf(x) = ϕ(x) +

∫ b(x)

a(x)

K(x, y)f(y)dy (17)

where α = 0 or 1, and ϕ(x) 6= 0. The functions a(x) and b(x) can be constants.

The idea of the method relies on the following concept. Suppose that the solution of the

integral equation f(x) is constant, i.e. f(x) = c for all x. Then, for x0 in the domain of

f(x), we can write the equation (17) as

αc = ϕ(x0) +

∫ b(x0)

a(x0)

K(x0, y)cdy = ϕ(x0) + c

∫ b(x0)

a(x0)

K(x0, y)dy.

It is just a linear equation for c, so can solve to find the value of the constant, that is

c =
ϕ(x0)

α−
∫ b(x0)

a(x0)
K(x0, y)dy

.

The idea of the method is to give a sequence of stepwise functions that are constant

within intervals, then we can turn the integral equation into a simple linear equations. At

each step a new stepwise function is found and they approximate the real solution f(x).
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6.1 Numerical approximation

The method we propose is based on the classical Monte-Carlo method to approximate in-

tegrals when the integrand is known. The idea is to use an iteration technique, where the

approximation is within a finite interval of the effective domain of the unknown function f(x).

At each step we have new finer partition for the interval, such partition comes from the gen-

eration of random numbers in the interval.

We can summarize the method as follows:

Consider an interval I contained in the domain of f(x). We want to approximate f(x)

in the interval I.

Step 1: We start with a point randomly chosen in I. We assume that the function is a

constant, then the integral equation is turned into a simple linear equation and we can solve

it to find the unknown constant.

Step 2: We generate a new random point in I. We assume that the function is a stepwise

function in the following way. With the solution of the linear equation of the previous step,

we assume that f(x) takes that value in a subinterval of I. And for the other part of I the

function takes a new unknown value. Again, this turns the integral equation into a linear

equation, and we can find the new unknown value. Then we repeat this step.

The iteration is based on the generated random numbers in I. We can generate numbers

from the uniform distribution on the interval to cover homogeneously.

6.1.1 Approximation for Fredholm equations

Suppose that we want to find an approximation on the interval [r, l] for the solution f(x) of

a Fredholm integral equation of the second kind:

f(x) = ϕ(x) +

∫ b

a

K(x, y)f(y)dy, (18)

where ϕ(x) and K(x, y) are known functions. We take [r, l] such that [a, b] ⊂ [r, l].

Step 1: We start with a point x0 ∈ [r, l]. From (18) we know that f(x) satisfies

f(x0) = ϕ(x0) +

∫ b

a

K(x0, y)f(y)dy.
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Now we assume that f(x) = y0 for x ∈ [a, b], which implies that

y0 = ϕ(x0) + y0

∫ b

a

K(x0, y)dy.

Therefore

y0 =
ϕ(x0)

1 −
∫ b
a
K(x0, y)dy

.

With this we are suggesting that f(x) ≈ y0 for x ∈ [r, l].

Step 2: We generate a random number x1 on [r, l]. From (18) we know that

f(x1) = ϕ(x1) +

∫ b

a

K(x1, y)f(y)dy.

We assume that the solution is a stepwise function.

If x1 /∈ [a, b] we assume that

f(x) =





y0, if x ∈ [a, b]

y1, if x /∈ [a, b].

Then we have

y1 = ϕ(x1) + y0

∫ b

a

K(x1, y)dy.

If x1 ∈ [a, b] and, x0 < x1 we assume that

f(x) =





y0, if x ∈ [a, x0+

x1−x0

2
]

y1, if x ∈ [x0+
x1−x0

2
, b].

This means that we split the interval [a, b] into subintervals. In those subintervals, we assume

that the solution takes the values that we have found and a new unknown one. If x1 < x0,

we still can do the same. Then we have

y1 = ϕ(x1) + y0

∫ x0+
x1−x0

2

a

K(x1, y)dy + y1

∫ b

x0+
x1−x0

2

K(x1, y)dy,

and we find y1,

y1 =
ϕ(x1) + y0

∫ x0+
x1−x0

2
a

K(x1, y)dy

1 −
∫ b
x0+

x1−x0
2

K(x1, y)dy
.
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Again this suggests that f(x1) ≈ y1. After finding y1 we can generate another random number

x2 and start again this Step 2, spliting with a new stepwise function to find y2. This gives

the iteration.

The idea is that this sequence of stepwise functions will converge to the solution of the

integral equation on [r, l].

6.1.2 Approximation for Volterra equations

Now we want to find an approximation on the interval [r, l] for the solution f(x) of a Volterra

integral equation of the second kind:

f(x) = ϕ(x) +

∫ x

a

K(x, y)f(y)dy. (19)

Again, ϕ(x) and K(x, y) are known functions. We take a ≤ r.

Step 1: We start with a point x0 ∈ [r, l]. From (19) we know that f(x) satisfies

f(x0) = ϕ(x0) +

∫ x0

a

K(x0, y)f(y)dy.

We assume that f(x) = y0 for x ∈ [a, l], which implies that

y0 = ϕ(x0) + y0

∫ x0

a

K(x0, y)dy.

Therefore y0 = ϕ(x0)
1−
∫ x0
a

K(x0,y)dy
. As for the Fredholm equation we suggest that f(x0) ≈ y0.

Step 2: We generate a random number x1 on [r, l]. From (19) we know that

f(x1) = ϕ(x1) +

∫ x1

a

K(x1, y)f(y)dy.

We assume that the solution f(x) is a stepwise function.

If x1 < x0 we assume that

f(x) =





y1, if x ∈ [a, x0]

y0, if x ∈ [x0, l].

Thus we have

y1 = ϕ(x1) + y1

∫ x1

a

K(x1, y)dy,
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and solving for y1 yields

y1 =
ϕ(x1)

1 −
∫ x1

a
K(x1, y)dy

.

If x0 < x1, we take

f(x) =





y0, if x ∈ [a, x0]

y1, if x ∈ [x0, l]

which leads to

y1 = ϕ(x1) + y0

∫ x0

a

K(x1, y)dy + y1

∫ x1

x0

K(x1, y)dy.

Then y1 is the solution of a linear equation and

y1 =
ϕ(x1) + y0

∫ x0

a
K(x1, y)dy

1 − y1

∫ x1

x0
K(x1, y)dy

.

And we can do the same when generating a new random number. At each iteration we have

that f(xn) ≈ yn. We expect to have a better approximations after more steps.

Remark. From the last two descriptions of the method, we can see that ϕ(x) must be

different from 0, otherwise the solution of the linear equations would be always 0.

6.1.3 Convergence of the algorithm

We present a heurtistic argument for the convergence of the algorithms presented above.

Let us write the integral equation in the form

αf(x) = T (f(x)), (20)

where f(x) is the unknown function. and T is an operator involving an integral in the

following way

T (f(x)) = ϕ(x) +

∫ b(x)

a(x)

K(x, y)f(y)dy.

Assume that there exits a unique solution f : R → R of (20), which is a Borel-measurable

function. Suppose we want to approximate the function f(x) in the finite interval [r, l].
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After n steps of the algorithm we find a stepwise function fn(x) which satisfies equation

(20) for a single point xn ∈ [r, l], i.e.

αfn(xn) = T (fn(xn)).

Notice that at step n + 1, we add a new random number xn+1 ∈ [r, l], so we construct a

new stepwise function fn+1(x) that satisfy equation (20) on the point xn+1. The form of the

function is

fn+1(x) = yn+1I{V (xn+1)}(x) + fn(x)I
c
{V (xn+1)}(x), (21)

where yn+1 is the value of the stepwise function in the subinterval V (xn+1), I{V (xn+1)}(x) is

the indicator function of the neighborhood V (xn+1), and Ic{V (xn+1)}(x) the indicator function

on the complement of V (xn+1), i.e. [r.l] \ V (xn+1). Equation (21) comes from the fact that

we built the step function fn+1(x) from fn(x), basically we assume that fn+1(x) is a unknown

constant in V (xn+1) and the known step function fn(x) is in [r, l] \ V (xn+1).

By proposition (11) the lengths of the neighborhoods V (xn+1) tend to zero. Then, we

can see from equation (21) that for n “big enough”

αfn+1(xk) ≈ αfk(xk) = T (fk(xk))

for k < n + 1 but “k not too far from n + 1”. Hence for ”big” n, equation (20) holds for

point x = xn+1 and also fn+1(xk) ≈ T (fn+1(xk)) for a collection of points {xk, k < n+ 1}
previously sampled from [r, l].

Since the lengths of the neighborhoods V (xn+1) go to zero when n → ∞, then the

sequence of sampled points will cover the interval [r, l]̇ with probability one, therefore

lim
n→∞

fn(x) = f(x) for almost all x in [r, l].

6.2 Examples

We present two examples. The programs are written in Maple and can be downloaded from

my website.
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Figure 7: Approximation for the Fredholm equation (exp(-x))

Example 1 Consider the following Fredholm integral equation of the second kind

f(x) = e−x − 1

2
+

1

2
e−x−1 +

1

2

∫ 1

0

(x+ 1)e−xyf(y)dy.

We know that the solution of this equation is f(x) = e−x, and we want to see how well the

algorithm works.

We start with x0 = 0, and we generate random numbers which are uniformly distributed

on the interval [−1, 2]. We have performed 100 iterations and plot just the last 70 iterations

(Figure 7). This is because we omit the “first” iterations since they are not as accurate as

the last ones. Since we know the exact solution we also plot the error in percentage of the

real value, i.e. we plot 100 ×
(
f(xn)−yn

f(xn)

)
for n = 1, ..., 100 (Figure 8). This gives an idea of

the rate of convergence.

Example 2 Consider the following Volterra integral equation of the second kind

f(x) = x+

∫ x

0

(y − x)f(y)dy.

We know that the solution of this equation is f(x) = sin(x), as before, we want to test the

algorithm.
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Figure 8: Percentage of the error (exp(-x))

We start with x0 = 9 and generate random numbers uniformly distributed on [0, 10]. We

generate 400 iterations and plot the last 200. As the graph (Figure 9) shows, the values

close to 10 are not very good approximations, this is because in the algorithm the values

closer to 0 collect more information from previous iterations than those values closer to 10.

Additionally we plot the percentage of the error, i.e. 100 ×
(
f(xn)−yn

f(xn)

)
for n = 51, ..., 400

(Figure 10).

Remark. The first problem we can highlight is the following. As the iteration runs

we have to calculate integrals on smaller intervals each time, this represents a limitation

computationally.

Remark. It would be interesting to extend our procedure for solving integral equations

to a more general class where the unknown function is inside the kernel, i.e.

∫
K(x, y, f(y))dy.

Such an example is the equation f(x) = x+
∫ x
0

sin(x− f(y))dy.

Remark. Also notice that we use a specific construction for the stepwise functions. We

can modify the way the partition is made, as well as the random number generation.
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Figure 9: Approximation for the Volterra equation (sin(x))
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Figure 10: Percentage of the error (sin(x))
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[6] Bertoin, J. (1996). Lévy Processes. Cambridge University Press, Cambridge.

[7] Billingsley, P (1999). Convergence of Probability Measures, 2nd ed. John Wiley & Sons,

New York.

[8] Bingham, N.H. (1971). Limit Theorems for Occupation Times of Markov Processes. Z.

Wahrscheinlichkeitstheorie verw. Geb. 17, 17–22.

[9] Bingham, N.H., Goldie, C. and Tuegels, J. (1989). Regular Variation (Encyclopedia

Math. Its Appl. 27). Cambridge University Press, Cambridge.

[10] Bingham, N.H. and Kiesel, R. (2004). Risk-Neutral Valuation, 2nd ed. Springer, London.

[11] Borovkov, K.A. (2003). Elements of Stochastic Modelling. World Scientific, Singapore.

[12] Casella, G. and Berger, R.L. (1990). Statistical Inference. Duxbury Press, Belmont.

[13] Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman

& Hall, Boca Raton (FL).

84



[14] Dana, R. and Jeanblanc, M. (2002). Financial Markets in Continuous time. Spinger,

Berlin.

[15] Datta, G.S. (2005). An alternative derivation of the distributions of the maximum like-

lihood estimators of the parameters in an inverse Gaussian distribution. Biometrika 92,

975–977.

[16] Delbaen F. and Schachermayer, W. (1994). Arbitrage and free lunch with bounded risk

for unbounded continuous processes. Mathematical Finance 4, 343–348.

[17] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41, 45–76.

[18] Dudley, R. M. (1989). Real Analysis and Probability. Wadsworth & Brooks, Belmont

(CA).

[19] Duffie, D. (2001). Dynamic Asset Pricing Theory, 3rd ed. Princeton University Press,

Princeton (NJ).

[20] Eberlein, E. (2001). Application of Generalized Hyperbolic Lévy Motions to Finance.
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